IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7374-d935876.html
   My bibliography  Save this article

Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom

Author

Listed:
  • Maria Christina Gudrun Hart

    (Institute for Information Systems, Leibniz University Hanover, Koenigsworther Platz 1, 30167 Hanover, Germany)

  • Michael Hans Breitner

    (Institute for Information Systems, Leibniz University Hanover, Koenigsworther Platz 1, 30167 Hanover, Germany)

Abstract

With rising electricity demand, heavy reliance on imports, and recent economic downturns due to the negative impact of the COVID-19 pandemic, supply chain bottlenecks, and the Russian invasion of Ukraine, Thailand is suffering severely from energy resilience risks. The government has therefore set a goal of decentralizing energy production through small-scale distributed renewable energy systems. To support their design and the planning process, we simulate multiple scenarios with wind turbines, photovoltaic systems, and battery storage for a model community in rural Nakhon Phanom, Thailand. Using the software NESSI4D, we evaluate and discuss their impact on energy resilience by considering environmental sustainability, economic attractiveness, and independence from the central power grid. To fill the gap of missing data on energy demand, we synthesize high-resolution load profiles from the Thailand Vietnam Socio-Economic Panel. We conclude that distributed photovoltaic systems with additional battery storage are only suitable to promote energy resilience if the government provides appropriate financial incentives. Considering temporal variations and local conditions, as well as a participatory decision-making process, are crucial for the long-term success of energy projects. Our advice to decision-makers is to design policies and regulatory support that are aligned with the preferences and needs of target communities.

Suggested Citation

  • Maria Christina Gudrun Hart & Michael Hans Breitner, 2022. "Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom," Energies, MDPI, vol. 15(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7374-:d:935876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Smith, Cameron & Burrows, John & Scheier, Eric & Young, Amberli & Smith, Jessica & Young, Tiffany & Gheewala, Shabbir H., 2015. "Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid," Renewable Energy, Elsevier, vol. 80(C), pages 85-100.
    3. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    4. Aya Yoshida & Panate Manomivibool & Tomohiro Tasaki & Pattayaporn Unroj, 2020. "Qualitative Study on Electricity Consumption of Urban and Rural Households in Chiang Rai, Thailand, with a Focus on Ownership and Use of Air Conditioners," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    5. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Massetti, Emanuele & Tavoni, Massimo, 2012. "A developing Asia emission trading scheme (Asia ETS)," Energy Economics, Elsevier, vol. 34(S3), pages 436-443.
    7. Apichonnabutr, W. & Tiwary, A., 2018. "Trade-offs between economic and environmental performance of an autonomous hybrid energy system using micro hydro," Applied Energy, Elsevier, vol. 226(C), pages 891-904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    2. Zhao, Bo & Chen, Jian & Zhang, Leiqi & Zhang, Xuesong & Qin, Ruwen & Lin, Xiangning, 2018. "Three representative island microgrids in the East China Sea: Key technologies and experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 262-274.
    3. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    4. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    5. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    6. Gavard, Claire & Winchester, Niven & Paltsev, Sergey, 2016. "Limited trading of emissions permits as a climate cooperation mechanism? US–China and EU–China examples," Energy Economics, Elsevier, vol. 58(C), pages 95-104.
    7. William Clements & Surendra Pandit & Prashanna Bajracharya & Joe Butchers & Sam Williamson & Biraj Gautam & Paul Harper, 2021. "Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking," Energies, MDPI, vol. 14(14), pages 1-23, July.
    8. Jie Wu & Ying Fan & Yan Xia, 2017. "How Can China Achieve Its Nationally Determined Contribution Targets Combining Emissions Trading Scheme and Renewable Energy Policies?," Energies, MDPI, vol. 10(8), pages 1-20, August.
    9. Ihsan, Abbas & Jeppesen, Matthew & Brear, Michael J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant," Applied Energy, Elsevier, vol. 238(C), pages 972-984.
    10. Li, Mengyu & Weng, Yuyan & Duan, Maosheng, 2019. "Emissions, energy and economic impacts of linking China’s national ETS with the EU ETS," Applied Energy, Elsevier, vol. 235(C), pages 1235-1244.
    11. Kinally, Christopher & Antonanzas-Torres, Fernando & Podd, Frank & Gallego-Schmid, Alejandro, 2024. "Life cycle assessment of solar home system informal waste management practices in Malawi," Applied Energy, Elsevier, vol. 364(C).
    12. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    13. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    15. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    16. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    17. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    18. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    19. Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
    20. Cemal Atici, 2022. "Reconciling the flexibility mechanisms of climate policies towards the inclusiveness of developing countries: commitments and prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9048-9067, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7374-:d:935876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.