IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7312-d933846.html
   My bibliography  Save this article

TSO/DSO Coordination for RES Integration: A Systematic Literature Review

Author

Listed:
  • Talal Alazemi

    (Department of Electronic and Electrical Engineering, Brunel University, London UP8 3PH, UK)

  • Mohamed Darwish

    (Department of Electronic and Electrical Engineering, Brunel University, London UP8 3PH, UK)

  • Mohammed Radi

    (UK Power Networks, London SE1 6NP, UK)

Abstract

The increasing penetration of large-scale Renewable Energy Sources (RESs) has raised several challenges for power grid operation. Power management solutions supporting the integration of RESs, such as those based on energy storage technologies, are generally costly. Alternatively, promoting a more proactive role of the Distribution System Operator (DSO) to successfully manage RESs’ uncertainty, and take advantage of their flexible resources for the provision of ancillary services, can avoid installing expensive devices in the network and reduce costs. In this line, improved coordination between Transmission System Operators (TSOs) and DSOs is highly desirable. In this paper, the feasibility of solving different aspects of the integration of RESs through an improved TSO/DSO coordination is evaluated. In particular, a Systematic Literature Review (SLR) is conducted to study the most relevant TSO/DSO coordination approaches, exclusively focused on integrating distributed RESs, currently available in the literature. Their main operational, managerial, economic, and computational challenges, advantages, and disadvantages are discussed in detail to identify the most promising research trends and the most concerning research gaps to pave the way for future research toward developing a solid TSO/DSO coordination mechanism for integrating RESs efficiently. The main results of the SLR show a clear trend in implementing decentralized TSO/DSO coordination models since they provide efficient facilitation of RESs’ services, while reducing computational burden and communication complexity and, consequently, reducing operative costs. In addition, while different aspects of the TSO/DSO coordination implementation, such as reactive power and voltage regulation, operational cost minimization, operational planning, and congestion management, have been thoroughly addressed in the literature, further research is needed regarding data exchange mechanisms and RESs’ uncertainty modeling and prediction. In this line, the development of standardized communication solutions, based on the Common Grid Model Exchange Standard (CGMES) of the International Electrotechnical Commission (IEC), has shown promising interoperability results, whereas the use of learning-based approaches to predict RESs’ uncertain behavior and distribution networks’ responses, using only historical data, which relieves the need for access to commercially sensitive and proprietary network data, has also shown itself to be a promising research direction.

Suggested Citation

  • Talal Alazemi & Mohamed Darwish & Mohammed Radi, 2022. "TSO/DSO Coordination for RES Integration: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7312-:d:933846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    2. Liu, Jia & Cheng, Haozhong & Zeng, Pingliang & Yao, Liangzhong & Shang, Ce & Tian, Yuan, 2018. "Decentralized stochastic optimization based planning of integrated transmission and distribution networks with distributed generation penetration," Applied Energy, Elsevier, vol. 220(C), pages 800-813.
    3. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    4. Hélène Le Cadre & Ilyès Mezghani & Anthony Papavasiliou, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," LIDAM Reprints CORE 2996, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. David Sebastian Stock & Francesco Sala & Alberto Berizzi & Lutz Hofmann, 2018. "Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management," Energies, MDPI, vol. 11(1), pages 1-25, January.
    6. Tran, Jacob & Madlener, Reinhard & Fuchs, Alexander, 2016. "Economic Optimization of Electricity Supply Security in Light of the Interplay between TSO and DSO," FCN Working Papers 21/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    7. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    8. Srđan Skok & Ahmed Mutapčić & Renata Rubesa & Mario Bazina, 2020. "Transmission Power System Modeling by Using Aggregated Distributed Generation Model Based on a TSO—DSO Data Exchange Scheme," Energies, MDPI, vol. 13(15), pages 1-15, August.
    9. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    10. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    2. Vijay, Rohit & Mathuria, Parul, 2024. "Common TSO-DSO market framework with no upfront priority to utilize DER flexibility," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    2. Ali Darudi & Hannes Weigt, 2024. "Review and Assessment of Decarbonized Future Electricity Markets," Energies, MDPI, vol. 17(18), pages 1-38, September.
    3. Martin Palovic, 2022. "Coordination of power network operators as a game-theoretical problem," Bremen Energy Working Papers 0040, Bremen Energy Research.
    4. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    5. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    6. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    7. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    8. Hermann, Alexander & Jensen, Tue Vissing & Østergaard, Jacob & Kazempour, Jalal, 2022. "A complementarity model for electric power transmission-distribution coordination under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(1), pages 313-329.
    9. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    10. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    11. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    12. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    14. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    15. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    16. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    17. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    18. Joao C. Ferreira & Ana Lucia Martins, 2018. "Building a Community of Users for Open Market Energy," Energies, MDPI, vol. 11(9), pages 1-21, September.
    19. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    20. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7312-:d:933846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.