IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7246-d932003.html
   My bibliography  Save this article

Energy and Exergy Analysis of Vapor Compression Refrigeration System with Low-GWP Refrigerants

Author

Listed:
  • Tauseef Aized

    (Department of Mechanical Engineering, University of Engineering and Technology Lahore, Lahore 54000, Pakistan)

  • Muhammad Rashid

    (Department of Mechanical Engineering, University of Engineering and Technology Lahore, Lahore 54000, Pakistan)

  • Fahid Riaz

    (Mechanical Engineering Department, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates)

  • Ameer Hamza

    (Department of Mechanical Engineering, University of Engineering and Technology Lahore, Lahore 54000, Pakistan)

  • Hafiz Zahid Nabi

    (Department of Mechanical Engineering, University of Engineering and Technology Lahore, Lahore 54000, Pakistan)

  • Muhammad Sultan

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Waqar Muhammad Ashraf

    (Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK)

  • Jaroslaw Krzywanski

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland)

Abstract

In this paper, a first- and second-law analysis of vapor compression refrigeration is presented to estimate and propose the replacement of R134 with working fluids having less global warming potential (GWP) and less exergy destruction and irreversibilities. Six different refrigerants were studied, namely, R717, R1234yf, R290, R134a, R600a, and R152a. A thermodynamic model was designed on Engineering Equation Solver (EES) software, and performance parameters were calculated. The model was deployed on all six refrigerants, while the used output parameters of performance were cooling capacity, coefficient of performance, discharge temperature, total exergy destruction, relative exergy destruction rates of different components, second-law efficiency, and efficiency defect of each component. The performance parameters were estimated at different speeds of the compressor (1000, 2000, and 3000 rpm) and fixed condenser and evaporator temperatures of 50 °C and 5 °C, respectively. The isentropic efficiency of the compressor was the same as the volumetric efficiency, and it was taken as 75%, 65%, and 55% at the compressor speeds of 1000 rpm, 2000 rpm, and 3000 rpm, respectively. A comparison of the performance parameters was presented by importing the results in MATLAB. It was found that the compressor had the highest exergy destruction compared to the other components. It was found that R152 was the refrigerant with zero ozone depletion potential (ODP) and a GWP value of 140 with less exergy destruction and irreversibilities. Moreover, it was easy to use R152a with good thermodynamic characteristics. It is estimated that R152a is a suitable replacement for R134a, as it can be used with few modifications.

Suggested Citation

  • Tauseef Aized & Muhammad Rashid & Fahid Riaz & Ameer Hamza & Hafiz Zahid Nabi & Muhammad Sultan & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2022. "Energy and Exergy Analysis of Vapor Compression Refrigeration System with Low-GWP Refrigerants," Energies, MDPI, vol. 15(19), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7246-:d:932003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahid Riaz & Kah Hoe Tan & Muhammad Farooq & Muhammad Imran & Poh Seng Lee, 2020. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    2. Anna Kulakowska & Anna Pajdak & Jaroslaw Krzywanski & Karolina Grabowska & Anna Zylka & Marcin Sosnowski & Marta Wesolowska & Karol Sztekler & Wojciech Nowak, 2020. "Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed," Energies, MDPI, vol. 13(6), pages 1-15, March.
    3. Fahid Riaz & Fu Zhi Yam & Muhammad Abdul Qyyum & Muhammad Wakil Shahzad & Muhammad Farooq & Poh Seng Lee & Moonyong Lee, 2021. "Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
    5. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanfeng Huang & Tingxun Li, 2023. "Experimental Investigation of Gravity Effect on a Vapor Compression Heat Pump System," Energies, MDPI, vol. 16(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    2. Muhammad Kaleem & Muzaffar Ali & Nadeem Ahmed Sheikh & Javed Akhtar & Rasikh Tariq & Jaroslaw Krzywanski, 2023. "Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings," Energies, MDPI, vol. 16(3), pages 1-24, January.
    3. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    4. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    5. Andreas Velte & Jörg Weise & Eric Laurenz & Joachim Baumeister & Gerrit Füldner, 2021. "Zeolite NaY-Copper Composites Produced by Sintering Processes for Adsorption Heat Transformation—Technology, Structure and Performance," Energies, MDPI, vol. 14(7), pages 1-24, April.
    6. Andy Felix Jităreanu & Mioara Mihăilă & Ciprian-Ionel Alecu & Alexandru-Dragoș Robu & Gabriela Ignat & Carmen Luiza Costuleanu, 2022. "The Relationship between Environmental Factors, Satisfaction with Life, and Ecological Education: An Impact Analysis from a Sustainability Pillars Perspective," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    7. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    8. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    9. Lukasz Lasek & Jaroslaw Krzywanski & Dorian Skrobek & Anna Zylka & Wojciech Nowak, 2023. "Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 16(24), pages 1-19, December.
    10. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    11. Chen, Hang & Wei, Shanbi & Yang, Wei & Liu, Shanchao, 2023. "Input wind speed forecasting for wind turbines based on spatio-temporal correlation," Renewable Energy, Elsevier, vol. 216(C).
    12. Moradzadeh, Arash & Moayyed, Hamed & Mohammadi-Ivatloo, Behnam & Vale, Zita & Ramos, Carlos & Ghorbani, Reza, 2023. "A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization," Renewable Energy, Elsevier, vol. 211(C), pages 697-705.
    13. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    14. Farah G. Fahad & Shurooq T. Al-Humairi & Amged T. Al-Ezzi & Hasan Sh. Majdi & Abbas J. Sultan & Thaqal M. Alhuzaymi & Thaar M. Aljuwaya, 2023. "Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    15. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
    16. Jaroslaw Krzywanski, 2022. "Advanced AI Applications in Energy and Environmental Engineering Systems," Energies, MDPI, vol. 15(15), pages 1-3, August.
    17. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    18. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    19. Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
    20. Fahid Riaz & Fu Zhi Yam & Muhammad Abdul Qyyum & Muhammad Wakil Shahzad & Muhammad Farooq & Poh Seng Lee & Moonyong Lee, 2021. "Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7246-:d:932003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.