IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7178-d929070.html
   My bibliography  Save this article

Model Control and Digital Implementation of the Three Phase Interleaved Parallel Bidirectional Buck–Boost Converter for New Energy Electric Vehicles

Author

Listed:
  • Chi Zhang

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
    Advanced Lightning, Power and Energy Research Centre (ALPER), Universiti Putra Malaysia, Serdang 43400, Malaysia
    Infineon Technologies China Co., Ltd., Xi’an 710077, China)

  • Binyue Xu

    (School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China)

  • Jasronita Jasni

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
    Advanced Lightning, Power and Energy Research Centre (ALPER), Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Mohd Amran Mohd Radzi

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
    Advanced Lightning, Power and Energy Research Centre (ALPER), Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Norhafiz Azis

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
    Advanced Lightning, Power and Energy Research Centre (ALPER), Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Qi Zhang

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

Abstract

In recent years, the imminent environmental problems and increasing attention to the global energy crisis have prompted the need for new opportunities and technologies to meet higher demands for clean and sustainable energy systems. As a result, new energy electric vehicles have been developed to replace fossil fuel cars. Therefore, this paper presents a three-phase interleaved parallel bidirectional buck–boost converter, which is the core factor of electrical energy flow regulation and management between the battery pack and motor drive inverter within the high voltage direct current bus and converts the voltage from two directions. Corresponding circuit topology, mathematical model, and control strategy are analyzed in three operation states: charge buck, discharge boost, and electric energy interaction modes. The digital implementation with double closed loop, power feedforward compensation, and bidirectional switching logic are realized by XDP TM Digital Power Controllers XDPP1100-Q040 of Infineon Technologies AG. Finally, the experimental results of the proposed converter clearly show that it achieves the objectives, namely, the feasibility and practicality of the system.

Suggested Citation

  • Chi Zhang & Binyue Xu & Jasronita Jasni & Mohd Amran Mohd Radzi & Norhafiz Azis & Qi Zhang, 2022. "Model Control and Digital Implementation of the Three Phase Interleaved Parallel Bidirectional Buck–Boost Converter for New Energy Electric Vehicles," Energies, MDPI, vol. 15(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7178-:d:929070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibham Veza & Mohd Azman Abas & Djati Wibowo Djamari & Noreffendy Tamaldin & Fitri Endrasari & Bentang Arief Budiman & Muhammad Idris & Anthony C. Opia & Firman Bagja Juangsa & Muhammad Aziz, 2022. "Electric Vehicles in Malaysia and Indonesia: Opportunities and Challenges," Energies, MDPI, vol. 15(7), pages 1-24, April.
    2. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    3. Gabriel Ayobami Ogunkunbi & Havraz Khedhir Younis Al-Zibaree & Ferenc Meszaros, 2022. "Modeling and Evaluation of Market Incentives for Battery Electric Vehicles," Sustainability, MDPI, vol. 14(7), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lulin Zhang & Shu Cheng & Jingtao Xu & Chaoqun Xiang & Tianjian Yu, 2022. "A New Optimal Thermal-Based Adaptive Frequency Control for Bidirectional DC–DC Converter with Full-Range ZVS," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khairy Sayed & Abdulaziz Almutairi & Naif Albagami & Omar Alrumayh & Ahmed G. Abo-Khalil & Hedra Saleeb, 2022. "A Review of DC-AC Converters for Electric Vehicle Applications," Energies, MDPI, vol. 15(3), pages 1-32, February.
    2. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    3. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    4. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    5. Yongda Li & Pingping Gong, 2023. "Fault-Tolerant Control of Induction Motor with Current Sensors Based on Dual-Torque Model," Energies, MDPI, vol. 16(8), pages 1-15, April.
    6. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    7. Lucian Mihet-Popa & Sergio Saponara, 2018. "Toward Green Vehicles Digitalization for the Next Generation of Connected and Electrified Transport Systems," Energies, MDPI, vol. 11(11), pages 1-24, November.
    8. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    9. Heba-Allah I. ElAzab & R. A. Swief & Hanady H. Issa & Noha H. El-Amary & Alsnosy Balbaa & H. K. Temraz, 2018. "FPGA Eco Unit Commitment Based Gravitational Search Algorithm Integrating Plug-in Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-17, September.
    10. Milad Akbari & Morris Brenna & Michela Longo, 2018. "Optimal Locating of Electric Vehicle Charging Stations by Application of Genetic Algorithm," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    11. Jemma J. Makrygiorgou & Antonio T. Alexandridis, 2019. "Power Electronic Control Design for Stable EV Motor and Battery Operation during a Route," Energies, MDPI, vol. 12(10), pages 1-21, May.
    12. Chengfei Geng & Fengyou He & Jingwei Zhang & Hongsheng Hu, 2017. "Partial Stray Inductance Modeling and Measuring of Asymmetrical Parallel Branches on the Bus-Bar of Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-16, October.
    13. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    14. Jaber Abu Qahouq & Yuan Cao, 2018. "Control Scheme and Power Electronics Architecture for a Wirelessly Distributed and Enabled Battery Energy Storage System," Energies, MDPI, vol. 11(7), pages 1-20, July.
    15. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
    16. Yueling Xu & Wenyu Zhang & Haijun Bao & Shuai Zhang & Ying Xiang, 2019. "A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    17. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    18. Hossain, M.S. & Fang, Yan Ru & Ma, Teng & Huang, Chen & Peng, Wei & Urpelainen, Johannes & Hebbale, Chetan & Dai, Hancheng, 2023. "Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality," Energy Policy, Elsevier, vol. 172(C).
    19. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    20. Aleksander Chudy & Piotr Hołyszko & Paweł Mazurek, 2022. "Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements," Energies, MDPI, vol. 15(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7178-:d:929070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.