IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7155-d928506.html
   My bibliography  Save this article

Failure Patterns of Transmission Tower-Line System Caused by Landslide Events

Author

Listed:
  • Hong Yu

    (Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650233, China)

  • Hao Li

    (Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650233, China)

  • Zhi-Qiang Zhang

    (Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510663, China)

  • Gui-Feng Zhang

    (Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510663, China)

  • Da-Hai Wang

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430074, China
    Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China)

  • Hua-Dong Zheng

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430074, China
    Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China)

Abstract

A transmission tower-line system consists of many towers and cables, which is a long-span structure. Due to topographical restrictions, the structure inevitably passes through wide areas prone to landslide hazards. The landslide causes the failure of the tower foundation and threatens the safety of the power transmission system. Therefore, the aim of this study was to investigate the collapse patterns of a transmission tower-line structure under landslides. The explicit analysis method was used to deal with the nonlinear dynamic response equations of the structure. To prove the effect of the landslides on the collapse patterns of the transmission tower-line structure, two foundation failure cases (Case 1 and Case 2) under landslides were considered. For each case, the displacement responses at tower tops and the progressive collapse behavior were analyzed, which illustrate that the failure patterns of the tower-line structure under landslides are dominated by two factors, i.e., the failure mode of the tower foundation and the pulling effect of cables. The overall tilting and hinge formation in the middle of the tower body are the main collapse patterns of the structure under Case 1 and Case 2, respectively. In addition, because of the pulling of cables, the collapse of one tower induced by the landslides always triggers the local failure of neighboring tower heads.

Suggested Citation

  • Hong Yu & Hao Li & Zhi-Qiang Zhang & Gui-Feng Zhang & Da-Hai Wang & Hua-Dong Zheng, 2022. "Failure Patterns of Transmission Tower-Line System Caused by Landslide Events," Energies, MDPI, vol. 15(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7155-:d:928506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junkuo Li & Fan Gao & Lihuan Wang & Yaning Ren & Chuncheng Liu & Aiquan Yang & Zhao Yan & Tao Jiang & Chengbo Li, 2022. "Collapse Mechanism of Transmission Tower Subjected to Strong Wind Load and Dynamic Response of Tower-Line System," Energies, MDPI, vol. 15(11), pages 1-18, May.
    2. Ruiyang Guan & Chuyuan Xiang & Zhidong Jia, 2022. "Anti-Wind Experiments and Damage Prediction of Transmission Tower under Typhoon Conditions in Coastal Areas," Energies, MDPI, vol. 15(9), pages 1-16, May.
    3. Dieter Rickenmann, 1999. "Empirical Relationships for Debris Flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 19(1), pages 47-77, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Gentile & Tiziana Bisantino & Giuliana Trisorio Liuzzi, 2008. "Debris-flow risk analysis in south Gargano watersheds (Southern-Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(1), pages 1-17, January.
    2. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    3. Khattri, Khim B. & Pudasaini, Shiva P., 2019. "Channel flow simulation of a mixture with a full-dimensional generalized quasi two-phase model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 280-305.
    4. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    5. M. Jakob & D. Stein & M. Ulmi, 2012. "Vulnerability of buildings to debris flow impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 241-261, January.
    6. Katrin Sieron & Lucia Capra & Sergio Rodríguez-Elizararrás, 2014. "Hazard assessment at San Martín volcano based on geological record, numerical modeling, and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 275-297, January.
    7. Vinicius Queiroz Veloso & Fabio Augusto Vieira Gomes Reis & Victor Cabral & José Eduardo Zaine & Claudia Vanessa Santos Corrêa & Marcelo Fischer Gramani & Caiubi Emmanuel Kuhn, 2023. "Hazard assessment of debris-flow-prone watersheds in Cubatão, São Paulo State, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3119-3138, April.
    8. Anna Ferrero & Maria Migliazza & Marina Pirulli, 2015. "Advance survey and modelling technologies for the study of the slope stability in an Alpine basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 303-326, March.
    9. Adnan Özdemir & Mehmet Delikanli, 2009. "A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 113-136, April.
    10. G. Chevalier & V. Medina & M. Hürlimann & A. Bateman, 2013. "Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 213-238, June.
    11. Chao Ma & Kaiheng Hu & Mi Tian, 2013. "Comparison of debris-flow volume and activity under different formation conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 261-273, June.
    12. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    13. Veniamin Perov & Sergey Chernomorets & Olga Budarina & Elena Savernyuk & Tatiana Leontyeva, 2017. "Debris flow hazards for mountain regions of Russia: regional features and key events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 199-235, August.
    14. Der-Guey Lin & Sen-Yen Hsu & Kuang-Tsung Chang, 2009. "Numerical simulations of flow motion and deposition characteristics of granular debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 623-650, September.
    15. Martin Mergili & Wolfgang Fellin & Stella Moreiras & Johann Stötter, 2012. "Simulation of debris flows in the Central Andes based on Open Source GIS: possibilities, limitations, and parameter sensitivity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1051-1081, April.
    16. Xiaojun Guo & Xingchang Chen & Guohu Song & Jianqi Zhuang & Jianglin Fan, 2021. "Debris flows in the Lushan earthquake area: formation characteristics, rainfall conditions, and evolutionary tendency," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2663-2687, April.
    17. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    18. Ruoshen Lin & Gang Mei & Ziyang Liu & Ning Xi & Xiaona Zhang, 2021. "Susceptibility Analysis of Glacier Debris Flow by Investigating the Changes in Glaciers Based on Remote Sensing: A Case Study," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    19. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    20. P. Champati Ray & Shovan Chattoraj & M. Bisht & Suresh Kannaujiya & Kamal Pandey & Ajanta Goswami, 2016. "Kedarnath disaster 2013: causes and consequences using remote sensing inputs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 227-243, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7155-:d:928506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.