IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7152-d928433.html
   My bibliography  Save this article

On the Existence and Applicability of Extremal Principles in the Theory of Irreversible Processes: A Critical Review

Author

Listed:
  • Igor Donskoy

    (Melentiev Energy Systems Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia)

Abstract

A brief review of the development of ideas on extremal principles in the theory of heat and mass transfer processes (including those in reacting media) is given. The extremal principles of non-equilibrium thermodynamics are critically examined. Examples are shown in which the mechanical use of entropy production-based principles turns out to be inefficient and even contradictory. The main problem of extremal principles in the theory of irreversible processes is the impossibility of their generalization, often even within the framework of a class of problems. Alternative extremal formulations are considered: variational principles for heat and mass transfer equations and other dissipative systems. Several extremal principles are singled out, which make it possible to simplify the numerical solution of the initial equations. Criteria are proposed that allow one to classify extremal principles according to their areas of applicability. Possible directions for further research in the search for extremal principles in the theory of irreversible processes are given.

Suggested Citation

  • Igor Donskoy, 2022. "On the Existence and Applicability of Extremal Principles in the Theory of Irreversible Processes: A Critical Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7152-:d:928433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia, Umberto, 2014. "Entropy generation: Minimum inside and maximum outside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 61-65.
    2. Bochkov, G.N. & Kuzovlev, Yu.E., 1981. "Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 106(3), pages 443-479.
    3. Pagonabarraga, I. & Pérez-Madrid, A. & Rubí, J.M., 1997. "Fluctuating hydrodynamics approach to chemical reactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 237(1), pages 205-219.
    4. Michael H. Peters, 2021. "Nonequilibrium Entropy Conservation and the Transport Equations of Mass, Momentum, and Energy," Energies, MDPI, vol. 14(8), pages 1-8, April.
    5. Yuri S. Popkov, 2020. "Equilibria and Stability of One Class of Positive Dynamic Systems with Entropy Operator: Application to Investment Dynamics Modeling," Mathematics, MDPI, vol. 8(6), pages 1-15, May.
    6. Kong, Xinlei & Wang, Zhongxin & Wu, Huibin, 2022. "Variational integrators for forced Lagrangian systems based on the local path fitting technique," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    7. Bochkov, G.N. & Kuzovlev, Yu.E., 1981. "Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 106(3), pages 480-520.
    8. D. Lebiedz & J. Unger, 2016. "On unifying concepts for trajectory-based slow invariant attracting manifold computation in kinetic multiscale models," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 22(2), pages 87-112, March.
    9. Lucia, Umberto, 2009. "Irreversibility, entropy and incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4025-4033.
    10. Kolenda, Z. & Donizak, J. & Hubert, J., 2004. "On the minimum entropy production in steady state heat conduction processes," Energy, Elsevier, vol. 29(12), pages 2441-2460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    2. Lucia, Umberto, 2016. "Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 121-128.
    3. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    4. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    5. Lucia, Umberto, 2015. "Quanta and entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 115-121.
    6. Lucia, Umberto, 2010. "Maximum entropy generation and κ-exponential model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4558-4563.
    7. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    8. Zárate-Navarro, Marco A. & García-Sandoval, J. Paulo & Dochain, Denis & Hudon, Nicolas, 2017. "Effect of mesoscopic conservative phenomena in the dynamics of chemical reactions at the macroscopic scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 79-91.
    9. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    10. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    11. Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
    12. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    13. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.
    14. Lucia, Umberto, 2014. "Entropy generation and the Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 256-260.
    15. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    16. Lucia, U., 2012. "Maximum or minimum entropy generation for open systems?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3392-3398.
    17. Lucia, Umberto, 2014. "Entropy generation: Minimum inside and maximum outside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 61-65.
    18. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    19. Lucia, Umberto, 2013. "Exergy flows as bases of constructal law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6284-6287.
    20. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7152-:d:928433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.