IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7024-d924274.html
   My bibliography  Save this article

Analytical Solution of Heat Transfer Performance of Grid Regenerator in Inverse Stirling Cycle

Author

Listed:
  • Yajuan Wang

    (School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an 710021, China
    College of Coal and Chemical Industry, Shaanxi Energy Institute, Xianyang 712000, China)

  • Jun’an Zhang

    (School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an 710021, China)

  • Zhiwei Lu

    (School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an 710021, China)

  • Jiayu Liu

    (School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an 710021, China)

  • Bo Liu

    (School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an 710021, China)

  • Hao Dong

    (School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an 710021, China)

Abstract

The regenerator plays an extremely important role in the Stirling circulation. A grid regenerator can be used for inverse Stirling machines at room temperature due to its low flow resistance. This paper proposes a hexagonal grid regenerator to theoretically explore heat transfer properties in the inverse Stirling cycle and establishes an approximate analytical model to analyze the effect mechanism of working frequency, thermal diffusivity and wall thickness on the oscillation flow. The results show that the wall thickness is one of the key factors affecting the equivalent heat transfer coefficient. Specifically, too small or too large wall thickness increases the instability of the heat transfer process. The ultimate wall thickness is determined by the equivalent heat transfer coefficient and thermal penetration depth, whose optimal value ensures not only sufficient heat exchange but also the full utilization of materials. With the increase in frequency, heat exchange performance is improved monotonously. Therefore, high–frequency operation can improve the heat exchange performance of the regenerator. In addition, an optimization criterion for the size of regenerator with the specific capacity of heat transfer as the objective parameter is proposed based on the equivalent heat transfer coefficient. The optimal parameters were obtained when relative thickness was set as 0.8 mm and the equivalent heat transfer coefficient was up to 10 4 –10 5 W/m 2 ·K indicating that the grid regenerator has broad application prospects in the inverse Stirling cycle.

Suggested Citation

  • Yajuan Wang & Jun’an Zhang & Zhiwei Lu & Jiayu Liu & Bo Liu & Hao Dong, 2022. "Analytical Solution of Heat Transfer Performance of Grid Regenerator in Inverse Stirling Cycle," Energies, MDPI, vol. 15(19), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7024-:d:924274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathias Scheunert & Robin Masser & Abdellah Khodja & Raphael Paul & Karsten Schwalbe & Andreas Fischer & Karl Heinz Hoffmann, 2020. "Power-Optimized Sinusoidal Piston Motion and Its Performance Gain for an Alpha-Type Stirling Engine with Limited Regeneration," Energies, MDPI, vol. 13(17), pages 1-19, September.
    2. Ismail, A. & Perrin, M. & Giurgea, S. & Bailly, Y. & Roy, J.C. & Barriere, T., 2022. "Multiphysical and multidimensional modelling of Parallel-Plate active magnetic regenerator," Applied Energy, Elsevier, vol. 314(C).
    3. Umara Khan & Ron Zevenhoven & Tor-Martin Tveit, 2020. "Evaluation of the Environmental Sustainability of a Stirling Cycle-Based Heat Pump Using LCA," Energies, MDPI, vol. 13(17), pages 1-16, August.
    4. Cui, Yunhao & Qiao, Jianxin & Song, Bin & Wang, Xiaotao & Yang, Zhaohui & Li, Haibing & Dai, Wei, 2021. "Experimental study of a free piston Stirling cooler with wound wire mesh regenerator," Energy, Elsevier, vol. 234(C).
    5. Wu, Zhanghua & Chen, Yanyan & Dai, Wei & Luo, Ercang & Li, Donghui, 2015. "Investigation on the thermoacoustic conversion characteristic of regenerator," Applied Energy, Elsevier, vol. 152(C), pages 156-161.
    6. Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    2. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    3. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    4. Pengchao Zang & Lingen Chen & Yanlin Ge, 2022. "Maximizing Efficient Power for an Irreversible Porous Medium Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 15(19), pages 1-12, September.
    5. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    6. Al-Nimr, Moh'd & Khashan, Saud A. & Al-Oqla, Hashem, 2023. "Novel techniques to enhance the performance of Stirling engines integrated with solar systems," Renewable Energy, Elsevier, vol. 202(C), pages 894-906.
    7. Yajuan Wang & Jun’an Zhang & Zhiwei Lu & Bo Liu & Hao Dong, 2023. "Analysis of Fluid-Solid Coupling Radial Heat Transfer Characteristics in a Normal Hexagonal Bundle Regenerator under Oscillating Flow," Energies, MDPI, vol. 16(18), pages 1-27, September.
    8. Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
    9. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    10. Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    11. Tan, Jingqi & Wei, Jianjian & Jin, Tao, 2020. "Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 262(C).
    12. Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
    13. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    14. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    15. Abdellah Khodja & Raphael Paul & Andreas Fischer & Karl Heinz Hoffmann, 2021. "Optimized Cooling Power of a Vuilleumier Refrigerator with Limited Regeneration," Energies, MDPI, vol. 14(24), pages 1-21, December.
    16. Werner, Sven, 2022. "Network configurations for implemented low-temperature district heating," Energy, Elsevier, vol. 254(PB).
    17. Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
    18. Xiaoming Zhou & Maosheng Sang & Minglei Bao & Yi Ding, 2022. "Tracing and Evaluating Life-Cycle Carbon Emissions of Urban Multi-Energy Systems," Energies, MDPI, vol. 15(8), pages 1-19, April.
    19. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    20. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7024-:d:924274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.