IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6986-d923255.html
   My bibliography  Save this article

Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin

Author

Listed:
  • Qiang Li

    (School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China)

  • Tanghu Zhang

    (School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China)

  • Tianyu Zhang

    (School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China)

  • Zhichao Xue

    (School of Science, Shenyang Jianzhu University, Shenyang 110168, China)

  • Hong Sun

    (School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China)

Abstract

In this paper, the saturation of electrolytes on the mass transfer property of porous electrodes in non-aqueous lithium air batteries has been studied based on digital twin. Herein, we reconstruct the porous cathode based on X-ray micro-computed tomography (μct) and quantitatively analyze the pore size distribution, specific surface area, triple-phase interface area, conductivity and diffusion coefficient of reactants at varying filling degrees of the electrolyte. The results derived from digital twin provide insight into the gas–liquid two-phase mass transfer performance in the porous cathode with various degrees of electrolyte saturation and demonstrate that the optimum electrolyte saturation is 60%.

Suggested Citation

  • Qiang Li & Tanghu Zhang & Tianyu Zhang & Zhichao Xue & Hong Sun, 2022. "Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin," Energies, MDPI, vol. 15(19), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6986-:d:923255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Esfahanian, Vahid & Dalakeh, Muhammad Taghi & Aghamirzaie, Navid, 2019. "Mathematical modeling of oxygen crossover in a lithium-oxygen battery," Applied Energy, Elsevier, vol. 250(C), pages 1356-1365.
    2. Yuan Gao & Teng Jin & Xiaoyan Wu & Tong Zhang, 2019. "The Effect of Fiber Orientation on Stochastic Reconstruction and Permeability of a Carbon Paper Gas Diffusion Layer," Energies, MDPI, vol. 12(14), pages 1-13, July.
    3. Tang, Michael & Chang, Jia-Cheng & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2019. "Glyme-based electrolyte formulation analysis in aprotic lithium-oxygen battery and its cyclic stability," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Semeraro, Concetta & Aljaghoub, Haya & Abdelkareem, Mohammad Ali & Alami, Abdul Hai & Olabi, A.G., 2023. "Digital twin in battery energy storage systems: Trends and gaps detection through association rule mining," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    2. Xiao, Liusheng & Bian, Miaoqi & Sun, Yushuai & Yuan, Jinliang & Wen, Xiaofei, 2024. "Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method," Applied Energy, Elsevier, vol. 357(C).
    3. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).
    4. Wang, Yuanhui & Hao, Liang & Bai, Minli, 2023. "Modeling the influence of water on the performance of non-aqueous Li-O2 batteries," Applied Energy, Elsevier, vol. 330(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6986-:d:923255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.