IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics036054421931610x.html
   My bibliography  Save this article

Glyme-based electrolyte formulation analysis in aprotic lithium-oxygen battery and its cyclic stability

Author

Listed:
  • Tang, Michael
  • Chang, Jia-Cheng
  • Kumar, S. Rajesh
  • Lue, Shingjiang Jessie

Abstract

In this work, the effect of electrolyte composition was evaluated on lithium-oxygen (Li–O2) battery using carbon cloth air electrode. Seven ether-based solvents were measured for their conductivity, viscosity, contact angle and decomposition temperature. The results were compiled with other physical properties to screen potential solvents for future testing. Diglyme and tetraglyme were identified and each of them was individually mixed with one of four lithium salts, yielding eight combinations of electrolytes. These electrolytes were assembled into Li–O2 batteries and the voltage and capacity data were recorded during cycling discharge/charge test. The effects of organic electrolyte physical properties on the battery impedance and cyclic life were discussed. Among the eight electrolytes, lithium bis(trifluoromethane) sulfonimide (LiTFSI) in tetraethylene glycol dimethyl ether (tetraglyme) resulted in the longest cyclic life at a discharge capacity cutoff of 2000 mAh gPt−1 than other compositions. This performance may be ascribed to the electrolyte's high conductivity, sufficient viscosity and suitable contact angle with the air electrode.

Suggested Citation

  • Tang, Michael & Chang, Jia-Cheng & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2019. "Glyme-based electrolyte formulation analysis in aprotic lithium-oxygen battery and its cyclic stability," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s036054421931610x
    DOI: 10.1016/j.energy.2019.115926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931610X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xianglin & Huang, Jing & Faghri, Amir, 2015. "Modeling study of a Li–O2 battery with an active cathode," Energy, Elsevier, vol. 81(C), pages 489-500.
    2. Farooqui, U.R. & Ahmad, A.L. & Hamid, N.A., 2017. "Challenges and potential advantages of membranes in lithium air batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1114-1129.
    3. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Li & Tanghu Zhang & Tianyu Zhang & Zhichao Xue & Hong Sun, 2022. "Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin," Energies, MDPI, vol. 15(19), pages 1-12, September.
    2. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jiashu & Zhu, Yongming & Gao, Jian & Li, Wantang, 2015. "Electrochemical performance of mixed carbon material with waterproof membrane for lithium air battery in the ambient atmosphere," Energy, Elsevier, vol. 89(C), pages 84-91.
    2. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    3. Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
    4. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    5. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    6. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    7. Kisoo Yoo & Soumik Banerjee & Jonghoon Kim & Prashanta Dutta, 2017. "A Review of Lithium-Air Battery Modeling Studies," Energies, MDPI, vol. 10(11), pages 1-42, November.
    8. Berrueta, Alberto & Urtasun, Andoni & Ursúa, Alfredo & Sanchis, Pablo, 2018. "A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model," Energy, Elsevier, vol. 144(C), pages 286-300.
    9. Hayat, K. & Vega, L.F. & AlHajaj, A., 2022. "What have we learned by multiscale models on improving the cathode storage capacity of Li-air batteries? Recent advances and remaining challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Ye, Luhan & Wang, Xiaoning & Lv, Weiqiang & Fei, Jipeng & Zhu, Gaolong & Liang, Yachun & Song, Yuanqiang & Zhai, Junyi & He, Weidong, 2015. "Analytical insight into the oxygen diffusion in wetted porous cathodes of Li-air batteries," Energy, Elsevier, vol. 93(P1), pages 416-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s036054421931610x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.