IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23388-2.html
   My bibliography  Save this article

Protein nanofibrils for next generation sustainable water purification

Author

Listed:
  • Mohammad Peydayesh

    (ETH Zurich, Department of Health Sciences and Technology)

  • Raffaele Mezzenga

    (ETH Zurich, Department of Health Sciences and Technology
    ETH Zurich, Department of Materials)

Abstract

Water scarcity is rapidly spreading across the planet, threatening the population across the five continents and calling for global sustainable solutions. Water reclamation is the most ecological approach for supplying clean drinking water. However, current water purification technologies are seldom sustainable, due to high-energy consumption and negative environmental footprint. Here, we review the cutting-edge technologies based on protein nanofibrils as water purification agents and we highlight the benefits of this green, efficient and affordable solution to alleviate the global water crisis. We discuss the different protein nanofibrils agents available and analyze them in terms of performance, range of applicability and sustainability. We underline the unique opportunity of designing protein nanofibrils for efficient water purification starting from food waste, as well as cattle, agricultural or dairy industry byproducts, allowing simultaneous environmental, economic and social benefits and we present a case analysis, including a detailed life cycle assessment, to establish their sustainable footprint against other common natural-based adsorbents, anticipating a bright future for this water purification approach.

Suggested Citation

  • Mohammad Peydayesh & Raffaele Mezzenga, 2021. "Protein nanofibrils for next generation sustainable water purification," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23388-2
    DOI: 10.1038/s41467-021-23388-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23388-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23388-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Mohammad Peydayesh & Sabrina Kistler & Jiangtao Zhou & Viviane Lutz-Bueno & Francesca Damiani Victorelli & Andréia Bagliotti Meneguin & Larissa Spósito & Tais Maria Bauab & Marlus Chorilli & Raffaele , 2023. "Amyloid-polysaccharide interfacial coacervates as therapeutic materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Natanael Karjanto, 2022. "Seeking Genuine Vocations through Sustainability in Chemical Engineering," Sustainability, MDPI, vol. 14(12), pages 1-23, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23388-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.