IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121005487.html
   My bibliography  Save this article

Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology

Author

Listed:
  • Kataki, S.
  • Chatterjee, S.
  • Vairale, M.G.
  • Sharma, S.
  • Dwivedi, S.K.
  • Gupta, D.K.

Abstract

Constructed wetland (CW), a robust eco-technology used for wastewater reclamation can be considered as an ideal synergism among water security, energy harvesting and environmental services. The technology as an alternative to existing energy and chemical intensive treatments has attained maturity for treating contaminants from range of waste streams, under wide range of climates and conditions. Recent trend shows additional research interventions for better expansion of the technology such as energy harvesting to make the system a net energy producer by coupling CW to microbial fuel cell (CW-MFC) and improved operation under climatically challenged condition. The assessment discusses treatment efficiency, bioelectricity production, improved electrode efficiency, performance variation w.r.t. Macrophyte, emerging pollutant removal and microbial community structure in CW-MFC, which reveal that carefully designed integrated CW-MFC with optimized system elements (electrode, spacing, separator, macrophyte, C source, rhizosphere microbes) are necessary for its more profitable futuristic application. Further, low temperature challenges of the technology and the strategies to achieve satisfactory low temperature performance were assessed. Successful implementation of the technology in cold climate calls for design of CW with incorporation of appropriate heat preservation method, active macrophyte or microbial consortia to work effectively under low temperature. Comparative evaluation of the technology with other treatment processes using Life cycle assessment (LCA) with cradle to grave approach (considering alternative substrates, energy harvesting, macrophyte use and disposal options) would further boost the technology penetration. Potential research areas that appear to be worth pursuing in future to obtain further gains in CW performance are also discussed.

Suggested Citation

  • Kataki, S. & Chatterjee, S. & Vairale, M.G. & Sharma, S. & Dwivedi, S.K. & Gupta, D.K., 2021. "Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005487
    DOI: 10.1016/j.rser.2021.111261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farhad Yazdandoost & Seyyed Ali Yazdani, 2019. "A New Integrated Portfolio Based Water-Energy-Environment Nexus in Wetland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 2991-3009, July.
    2. Lars Peter Nielsen & Nils Risgaard-Petersen & Henrik Fossing & Peter Bondo Christensen & Mikio Sayama, 2010. "Electric currents couple spatially separated biogeochemical processes in marine sediment," Nature, Nature, vol. 463(7284), pages 1071-1074, February.
    3. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María J. López-Serrano & Fida Hussain Lakho & Stijn W.H. Van Hulle & Ana Batlles-delaFuente, 2023. "Life cycle cost assessment and economic analysis of a decentralized wastewater treatment to achieve water sustainability within the framework of circular economy," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 103-133, March.
    2. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Kamali, Mohammadreza & Guo, Yutong & Aminabhavi, Tejraj M. & Abbassi, Rouzbeh & Dewil, Raf & Appels, Lise, 2023. "Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    6. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Microbial Granule Technology—Prospects for Wastewater Treatment and Energy Production," Energies, MDPI, vol. 16(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahsa Mesgar & Diego Ramirez-Lovering & Mohamed El-Sioufi, 2021. "Tension, Conflict, and Negotiability of Land for Infrastructure Retrofit Practices in Informal Settlements," Land, MDPI, vol. 10(12), pages 1-15, November.
    2. Cleuren, Bart & Proesmans, Karel, 2020. "Stochastic impedance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    3. Katia Ghezali & Nourredine Bentahar & Narcis Barsan & Valentin Nedeff & Emilian Moșneguțu, 2022. "Potential of Canna indica in Vertical Flow Constructed Wetlands for Heavy Metals and Nitrogen Removal from Algiers Refinery Wastewater," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    4. Nash Jett D. G. Reyes & Franz Kevin F. Geronimo & Heidi B. Guerra & Lee-Hyung Kim, 2023. "Bibliometric Analysis and Comprehensive Review of Stormwater Treatment Wetlands: Global Research Trends and Existing Knowledge Gaps," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    5. Cristina S. C. Calheiros & Alexandros I. Stefanakis, 2021. "Green Roofs Towards Circular and Resilient Cities," Circular Economy and Sustainability, Springer, vol. 1(1), pages 395-411, June.
    6. Anacleto Rizzo & Giulio Conte & Fabio Masi, 2021. "Adjusted Unit Value Transfer as a Tool for Raising Awareness on Ecosystem Services Provided by Constructed Wetlands for Water Pollution Control: An Italian Case Study," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    7. Lu Yang & Zhi Zhang & Weikang Zhang & Tong Zhang & Huan Meng & Hongwei Yan & Yue Shen & Zeqian Li & Xiaotian Ma, 2023. "Wetland Park Planning and Management Based on the Valuation of Ecosystem Services: A Case Study of the Tieling Lotus Lake National Wetland Park (LLNWP), China," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    8. Ahmed M. N. Masoud & Marika Belotti & Amani Alfarra & Sabrina Sorlini, 2022. "Multi-Criteria Analysis for Evaluating Constructed Wetland as a Sustainable Sanitation Technology, Jordan Case Study," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    9. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    10. Yi Ding & Xia Li & Di Wang & Jianming Xu & Yang Yu, 2023. "Study on Spatial and Temporal Differences of Water Resource Sustainable Development and Its Influencing Factors in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    11. Chengxiang Zhang & Li Wen & Yuyu Wang & Cunqi Liu & Yan Zhou & Guangchun Lei, 2020. "Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    12. Marwa M. Waly & Slobodan B. Mickovski & Craig Thomson, 2023. "Application of Circular Economy in Oil and Gas Produced Water Treatment," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    13. Adam R. Mason & Pepe Puchol‐Salort & Alfred Gathorne‐Hardy & Barbara Maria Smith & Rupert J. Myers, 2024. "Local terrestrial biodiversity impacts in life cycle assessment: A case study of sedum roofs in London, UK," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 496-511, June.
    14. Siddappa Pallavi & Shivamurthy Ravindra Yashas & Kotermane Mallikarjunappa Anilkumar & Behzad Shahmoradi & Harikaranahalli Puttaiah Shivaraju, 2021. "Comprehensive Understanding of Urban Water Supply Management: Towards Sustainable Water-socio-economic-health-environment Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 315-336, January.
    15. Jesper J. Bjerg & Jamie J. M. Lustermans & Ian P. G. Marshall & Anna J. Mueller & Signe Brokjær & Casper A. Thorup & Paula Tataru & Markus Schmid & Michael Wagner & Lars Peter Nielsen & Andreas Schram, 2023. "Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Marwa M. Waly & Slobodan B. Mickovski & Craig Thomson & Kingsley Amadi, 2022. "Impact of Implementing Constructed Wetlands on Supporting the Sustainable Development Goals," Land, MDPI, vol. 11(11), pages 1-14, November.
    17. Ryohei Ogawa & Ye Zhang & Vouchlay Theng & Zhongyu Guo & Manna Wang & Chihiro Yoshimura, 2023. "Capacity Assessment of Urban Green Space for Mitigating Combined Sewer Overflows in the Tokyo Metropolitan Area," Land, MDPI, vol. 12(5), pages 1-16, April.
    18. Md Tabish Noori & Dayakar Thatikayala & Booki Min, 2022. "Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil," Energies, MDPI, vol. 15(22), pages 1-22, November.
    19. Mahsa Mesgar & Diego Ramirez-Lovering, 2021. "Informal Land Rights and Infrastructure Retrofit: A Typology of Land Rights in Informal Settlements," Land, MDPI, vol. 10(3), pages 1-17, March.
    20. Glenn Dale & Gabriela Dotro & Puneet Srivastava & David Austin & Stacy Hutchinson & Peter Head & Ashantha Goonetilleke & Alexandros Stefanakis & Ranka Junge & José A. Fernández L. & Vanessa Weyer & Wa, 2021. "Education in Ecological Engineering—a Need Whose Time Has Come," Circular Economy and Sustainability, Springer, vol. 1(1), pages 333-373, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.