A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Technology.
- Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
- Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
- Clements, A.E. & Hurn, A.S. & Li, Z., 2016.
"Forecasting day-ahead electricity load using a multiple equation time series approach,"
European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
- Adam Clements & Stan Hurn & Zili Li, 2014. "Forecasting day-ahead electricity load using a multiple equation time series approach," NCER Working Paper Series 103, National Centre for Econometric Research, revised 06 May 2015.
- Magnano, L. & Boland, J.W., 2007. "Generation of synthetic sequences of electricity demand: Application in South Australia," Energy, Elsevier, vol. 32(11), pages 2230-2243.
- Chahkoutahi, Fatemeh & Khashei, Mehdi, 2017. "A seasonal direct optimal hybrid model of computational intelligence and soft computing techniques for electricity load forecasting," Energy, Elsevier, vol. 140(P1), pages 988-1004.
- Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016.
"Improving short term load forecast accuracy via combining sister forecasts,"
Energy, Elsevier, vol. 98(C), pages 40-49.
- Jakub Nowotarski & Bidong Liu & Rafal Weron & Tao Hong, 2015. "Improving short term load forecast accuracy via combining sister forecasts," HSC Research Reports HSC/15/05, Hugo Steinhaus Center, Wroclaw University of Technology.
- Joanna Nowicka-Zagrajek & Rafal Weron, 2002. "Modeling electricity loads in California: ARMA models with hyperbolic noise," HSC Research Reports HSC/02/02, Hugo Steinhaus Center, Wroclaw University of Technology.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Lozinskaia, Agata & Redkina, Anastasiia & Shenkman, Evgeniia, 2020. "Electricity consumption forecasting for integrated power system with seasonal patterns," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 5-25.
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
- Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
- María Del Carmen Ruiz-Abellón & Antonio Gabaldón & Antonio Guillamón, 2018. "Load Forecasting for a Campus University Using Ensemble Methods Based on Regression Trees," Energies, MDPI, vol. 11(8), pages 1-22, August.
- George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
- Hammad Mahmoud A. & Jereb Borut & Rosi Bojan & Dragan Dejan, 2020. "Methods and Models for Electric Load Forecasting: A Comprehensive Review," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 51-76, February.
- Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
- Bessec, Marie & Fouquau, Julien, 2018.
"Short-run electricity load forecasting with combinations of stationary wavelet transforms,"
European Journal of Operational Research, Elsevier, vol. 264(1), pages 149-164.
- Marie Bessec & Julien Fouquau, 2018. "Short-run electricity load forecasting with combinations of stationary wavelet transforms," Post-Print hal-01644930, HAL.
- Nowotarski, Jakub & Weron, Rafał, 2016.
"On the importance of the long-term seasonal component in day-ahead electricity price forecasting,"
Energy Economics, Elsevier, vol. 57(C), pages 228-235.
- Jakub Nowotarski & Rafal Weron, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," HSC Research Reports HSC/16/05, Hugo Steinhaus Center, Wroclaw University of Technology.
- Yuri S. Popkov & Alexey Yu. Popkov & Yuri A. Dubnov & Dimitri Solomatine, 2020. "Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models," Mathematics, MDPI, vol. 8(7), pages 1-20, July.
- Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Masoud Sobhani & Allison Campbell & Saurabh Sangamwar & Changlin Li & Tao Hong, 2019. "Combining Weather Stations for Electric Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-11, April.
- Wang, Jianzhou & Zhu, Wenjin & Zhang, Wenyu & Sun, Donghuai, 2009. "A trend fixed on firstly and seasonal adjustment model combined with the [epsilon]-SVR for short-term forecasting of electricity demand," Energy Policy, Elsevier, vol. 37(11), pages 4901-4909, November.
- Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
- Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
- Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
- Richard Bean, 2023. "Forecasting the Monash Microgrid for the IEEE-CIS Technical Challenge," Energies, MDPI, vol. 16(3), pages 1-23, January.
- Xiao, Jin & Li, Yuxi & Xie, Ling & Liu, Dunhu & Huang, Jing, 2018. "A hybrid model based on selective ensemble for energy consumption forecasting in China," Energy, Elsevier, vol. 159(C), pages 534-546.
More about this item
Keywords
short-term forecasting; electrical power demand; power systems; autoregressive forecasting methods; classical forecasting methods; artificial intelligence methods; Big Data; machine learning; Data Mining;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6729-:d:915116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.