IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6724-d914973.html
   My bibliography  Save this article

Reliability Evaluation of Smart Substation Based on Time-Varying Probabilistic Hybrid Attack Graph

Author

Listed:
  • Zhiyong Li

    (School of Automation, Central South University, Changsha 410083, China)

  • Wubin Wen

    (School of Automation, Central South University, Changsha 410083, China)

  • Rende Dai

    (Hunan Zhongda Design Institute Co., Ltd., Changsha 410205, China)

  • Wanting Xi

    (School of Automation, Central South University, Changsha 410083, China)

Abstract

A substation is the portion of a power grid that forms a link between the cyber system and the physical system. Reliability evaluation of smart substations based on a time-varying probabilistic hybrid attack graph (TVPHAG) is studied in this paper. First, the topology network of the smart substation is established, whose attributes are represented by probability. Then, in order to solve the problem of asynchrony in the cyber-physical system and the hybrid caused by heterogeneity, time-varying state equation in topology and cuts in algebra are introduced to TVPHAG. Based on TVPHAG, the evaluation of the reliability of cyber-physical systems with multiple equipment and multiple timescales is established. On this basis, the influences of physical conditions, cyberattacks, physical attacks, and cyber-physical attacks on substations are analyzed, respectively. Finally, the simulation shows that the method is effective in evaluating the reliability of smart substations, providing a new method for the evaluation of reliability.

Suggested Citation

  • Zhiyong Li & Wubin Wen & Rende Dai & Wanting Xi, 2022. "Reliability Evaluation of Smart Substation Based on Time-Varying Probabilistic Hybrid Attack Graph," Energies, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6724-:d:914973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Remigiusz Wisniewski, 2021. "Design of Petri Net-Based Cyber-Physical Systems Oriented on the Implementation in Field Programmable Gate Arrays," Energies, MDPI, vol. 14(21), pages 1-25, October.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Xiaohong Yin & Lin Li & Qiang Liu, 2022. "A Study on the Vulnerability Cascade Propagation of Integrated Energy Systems in the Transportation Industry Based on the Petri Network," Energies, MDPI, vol. 15(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    4. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    5. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    6. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    7. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    10. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    11. Dong, Zhengcheng & Tian, Meng & Liang, Jiaqi & Fang, Yanjun & Lu, Yuxin, 2019. "Research on the connection radius of dependency links in interdependent spatial networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 555-564.
    12. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    15. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.
    16. Wang, Jianwei & Cai, Lin & Xu, Bo & Li, Peng & Sun, Enhui & Zhu, Zhiguo, 2016. "Out of control: Fluctuation of cascading dynamics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1231-1243.
    17. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    18. Gross, Bnaya & Bonamassa, Ivan & Havlin, Shlomo, 2021. "Interdependent transport via percolation backbones in spatial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    19. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    20. Jean-Francois Castet & Joseph H Saleh, 2013. "Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6724-:d:914973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.