IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v405y2014icp25-34.html
   My bibliography  Save this article

Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses

Author

Listed:
  • Yu, Haitao
  • Wang, Jiang
  • Liu, Chen
  • Deng, Bin
  • Wei, Xile

Abstract

We study the dependence of synchronization transitions in modular networks of bursting neurons with hybrid electrical–chemical synapses on the information transmission delay and the probability of electrical synapses. The modular network is composed of subnetworks (clusters); each of them presents the scale-free property. It is shown that, irrespective of the probability of electrical synapses, the time delay can always induce synchronization transitions in modular neuronal networks. Regions of synchronization and non-synchronization appear intermittently as the delay increases. In particular, all these transitions to burst synchronization occur approximately at integer multiples of oscillatory period of individual neurons. In addition, for larger probability of electrical synapses, the intermittent synchronization transition is more profound, due to the stronger synchronization capability of electrical synapses compared with chemical ones. Furthermore, the transition to synchronous bursting can also be induced by the variation of modular network parameters, that is, the coupling strength between neurons, the interconnection probability between different subnetworks, as well as the number of subnetworks. Particularly, we find that a modular neuronal network is harder to get global synchronization when constituting neurons are dispersed over more clusters. On the other hand, chemical and electrical synapses can perform complementary roles in the synchronization of hybrid modular neuronal networks: the larger the electrical synapse strength is the smaller the chemical synapse strength needed to achieve burst synchronization.

Suggested Citation

  • Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.
  • Handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:25-34
    DOI: 10.1016/j.physa.2014.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002052
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2013. "Delay-induced synchronization transitions in small-world neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5473-5480.
    2. Yu, Haitao & Wang, Jiang & Liu, Qiuxiang & Sun, Jianbing & Yu, Haifeng, 2013. "Delay-induced synchronization transitions in small-world neuronal networks with hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 68-74.
    3. Shi, Xia & Lu, Qishao, 2009. "Burst synchronization of electrically and chemically coupled map-based neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2410-2419.
    4. Wang, Qingyun & Perc, Matjaž & Duan, Zhisheng & Chen, Guanrong, 2010. "Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3299-3306.
    5. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Bin & Zhu, Zechen & Yang, Shuangming & Wei, Xile & Wang, Jiang & Yu, Haitao, 2016. "FPGA implementation of motifs-based neuronal network and synchronization analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 388-402.
    2. Yu, Haitao & Guo, Xinmeng & Qin, Qing & Deng, Yun & Wang, Jiang & Liu, Jing & Cao, Yibin, 2017. "Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 674-687.
    3. Wang, Jiang & Guo, Xinmeng & Yu, Haitao & Liu, Chen & Deng, Bin & Wei, Xile & Chen, Yingyuan, 2014. "Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 40-48.
    4. Liu, Chen & Wang, Jiang & Wang, Lin & Yu, Haitao & Deng, Bin & Wei, Xile & Tsang, Kaiming & Chan, Wailok, 2014. "Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 1-12.
    5. Lü, Ling & Li, Chengren & Li, Gang & Sun, Ao & Yan, Zhe & Rong, Tingting & Gao, Yan, 2017. "Design of synchronization technique for uncertain discrete network group with diverse structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 543-551.
    6. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2013. "Delay-induced synchronization transitions in small-world neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5473-5480.
    7. Li, Chengren & Lü, Ling & Sun, Ying & Wang, Ying & Wang, Wenjun & Sun, Ao, 2016. "Parameter identification and synchronization for uncertain network group with different structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 624-631.
    8. Huang, Shoufang & Zhang, Jiqian & Hu, Chin-Kun, 2019. "Effects of external stimulations on transition behaviors in neural network with time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    10. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    11. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    15. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    16. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    17. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    18. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    19. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    20. Krawiecki, A., 2018. "Spin glass transition in a simple variant of the Ising model on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 773-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.