IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6683-d913399.html
   My bibliography  Save this article

Optimization Design of the Organic Rankine Cycle for an Ocean Thermal Energy Conversion System

Author

Listed:
  • Xiaowei Yang

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
    Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Yanjun Liu

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
    Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Yun Chen

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
    Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Li Zhang

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China)

Abstract

This study selects five parameters as decision variables for the optimization design of an ocean thermal energy conversion system, including the evaporating temperature, the condensing temperature, the pinch-point temperature difference between the evaporator and condenser, and the working fluid flow rate. The optimization goal is to maximize the net output power per unit area and the exergy efficiency. The final scheme is comprehensively screened out from the Pareto solution set through some evaluation indexes. Finally, this study also analyzes the effects of four decision variables on the optimization objectives and the evaluation indexes. This study finds that evaporating temperature and condensing temperature have similar effects on the two objective functions. However, the pinch-point temperature difference has different effects on them. The back work ratio is obviously affected by the condensing temperature. A small pinch-point temperature difference is beneficial and improves the performance of an ocean thermal energy conversion system. The effects of evaporating temperature and condensing temperature on the investment cost per unit net output power are roughly similar to those on the net output power per unit heat exchange area. However, the effects of the pinch-point temperature difference on the two performance aspects are inconsistent.

Suggested Citation

  • Xiaowei Yang & Yanjun Liu & Yun Chen & Li Zhang, 2022. "Optimization Design of the Organic Rankine Cycle for an Ocean Thermal Energy Conversion System," Energies, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6683-:d:913399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    2. Yang, Min-Hsiung & Yeh, Rong-Hua, 2014. "Analysis of optimization in an OTEC plant using organic Rankine cycle," Renewable Energy, Elsevier, vol. 68(C), pages 25-34.
    3. Giostri, Andrea & Romei, Alessandro & Binotti, Marco, 2021. "Off-design performance of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 170(C), pages 1353-1366.
    4. Borugadda, Venu Babu & Kamath, Girish & Dalai, Ajay K., 2020. "Techno-economic and life-cycle assessment of integrated Fischer-Tropsch process in ethanol industry for bio-diesel and bio-gasoline production," Energy, Elsevier, vol. 195(C).
    5. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    2. Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Role of R717 blends in ocean thermal energy conversion organic Rankine cycle," Renewable Energy, Elsevier, vol. 221(C).
    3. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
    4. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    5. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    6. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    7. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
    8. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.
    9. Li, Deming & Fan, Chengcheng & Zhang, Chengbin & Chen, Yongping, 2022. "Control strategy of load following for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 193(C), pages 595-607.
    10. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    11. Chen, Fengyun & Liu, Lei & Zeng, Hao & Peng, Jingping & Ge, Yunzheng & Liu, Weimin, 2024. "Theoretical and experimental study on the secondary heat recovery cycle of the mixed working fluid in ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 227(C).
    12. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    13. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    14. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    15. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    16. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    17. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    18. Javier Uche & Amaya Martínez-Gracia & Ignacio Zabalza & Sergio Usón, 2024. "Renewable Energy Source (RES)-Based Polygeneration Systems for Multi-Family Houses," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    19. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    20. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6683-:d:913399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.