IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6620-d911574.html
   My bibliography  Save this article

Selection of a Transparent Meta-Model Algorithm for Feasibility Analysis Stage of Energy Efficient Building Design: Clustering vs. Tree

Author

Listed:
  • Seung Yeoun Choi

    (Han-il Mechanical & Electrical Consultant, Seoul 07271, Korea)

  • Sean Hay Kim

    (School of Architecture, Seoul National University of Science and Technology, Seoul 01811, Korea)

Abstract

Energy Efficient Building (EEB) design decisions that have traditionally been made in the later stages of the design process now often need to be made as early as the feasibility analysis stage. However, at this very early stage, the design frame does not yet provide sufficient details for accurate simulations to be run. In addition, even if the decision-makers consider an exhaustive list of options, the selected design may not be optimal, or carefully considered decisions may later need to be rolled back. At this stage, design exploration is much more important than evaluating the performance of alternatives, thus a more transparent and interpretable design support model is more advantageous for design decision-making. In the present study, we develop an EEB design decision-support model constructed by a transparent meta-model algorithm of simulations that provides reasonable accuracy, whereas most of the literature used opaque algorithms. The conditional inference tree (CIT) algorithm exhibits superior interpretability and reasonable classification accuracy in estimating performance, when compared to other decision trees (classification and regression tree, random forest, and conditional inference forest) and clustering (hierarchical clustering, k-means, self-organizing map, and Gaussian mixture model) algorithms.

Suggested Citation

  • Seung Yeoun Choi & Sean Hay Kim, 2022. "Selection of a Transparent Meta-Model Algorithm for Feasibility Analysis Stage of Energy Efficient Building Design: Clustering vs. Tree," Energies, MDPI, vol. 15(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6620-:d:911574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    2. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    3. Fu, Wei & Simonoff, Jeffrey S., 2015. "Unbiased regression trees for longitudinal and clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 53-74.
    4. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    5. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
    6. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    7. Schivinski, Bruno, 2021. "Eliciting brand-related social media engagement: A conditional inference tree framework," Journal of Business Research, Elsevier, vol. 130(C), pages 594-602.
    8. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    9. Chen, Xi & Yang, Hongxing, 2018. "Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China," Applied Energy, Elsevier, vol. 215(C), pages 145-158.
    10. Jutta Schade & Thomas Olofsson & Marcus Schreyer, 2011. "Decision-making in a model-based design process," Construction Management and Economics, Taylor & Francis Journals, vol. 29(4), pages 371-382.
    11. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Westermann, Paul & Welzel, Matthias & Evins, Ralph, 2020. "Using a deep temporal convolutional network as a building energy surrogate model that spans multiple climate zones," Applied Energy, Elsevier, vol. 278(C).
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    3. Singh, Manav Mahan & Singaravel, Sundaravelpandian & Geyer, Philipp, 2021. "Machine learning for early stage building energy prediction: Increment and enrichment," Applied Energy, Elsevier, vol. 304(C).
    4. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    6. Zhan, Jin & He, Wenjing & Huang, Jianxiang, 2024. "Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model," Applied Energy, Elsevier, vol. 356(C).
    7. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    8. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    9. Mostafa M. Saad & Ramanunni Parakkal Menon & Ursula Eicker, 2023. "Supporting Decision Making for Building Decarbonization: Developing Surrogate Models for Multi-Criteria Building Retrofitting Analysis," Energies, MDPI, vol. 16(16), pages 1-28, August.
    10. Rode, David C. & Fischbeck, Paul S., 2018. "Reduced-form models for power market risk analysis," Applied Energy, Elsevier, vol. 228(C), pages 1640-1655.
    11. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    12. Kwok Wai Mui & Ling Tim Wong & Manoj Kumar Satheesan & Anjana Balachandran, 2021. "A Hybrid Simulation Model to Predict the Cooling Energy Consumption for Residential Housing in Hong Kong," Energies, MDPI, vol. 14(16), pages 1-18, August.
    13. Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.
    14. Chegari, Badr & Tabaa, Mohamed & Simeu, Emmanuel & Moutaouakkil, Fouad & Medromi, Hicham, 2022. "An optimal surrogate-model-based approach to support comfortable and nearly zero energy buildings design," Energy, Elsevier, vol. 248(C).
    15. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    17. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    18. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    19. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Rajvikram Madurai Elavarasan & Umashankar Subramaniam & Saad Mekhilef & Lucian Mihet-Popa, 2021. "A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 14(24), pages 1-16, December.
    20. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6620-:d:911574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.