IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5321-d869065.html
   My bibliography  Save this article

Life Cycle Prediction Assessment of Battery Electrical Vehicles with Special Focus on Different Lithium-Ion Power Batteries in China

Author

Listed:
  • Yang Yang

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

  • Libo Lan

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Zhuo Hao

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Jianyou Zhao

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Geng Luo

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Pei Fu

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Yisong Chen

    (School of Automobile, Chang’an University, Xi’an 710064, China)

Abstract

The incentive policies of new energy vehicles substantially promoted the development of the electrical vehicles technology and industry in China. However, the environmental impact of the key technology parameters progress on the battery electrical vehicles (BEV) is uncertain, and the BEV matching different lithium-ion power batteries shows different environmental burdens. This study conducts a life cycle assessment (LCA) of a BEV matching four different power batteries of lithium-ion phosphate (LFP), lithium-ion nickel-cobalt-manganese (NCM), lithium manganese oxide (LMO), and lithium titanate oxide (LTO) batteries. In addition, the 2025 and 2030 prediction analyses of the batteries production and life cycle BEV are conducted with the specially considered change and progress of the power battery energy density, battery manufacturing energy consumption, electricity structure, battery charge efficiency, and vehicle lightweight level. In addition, sensitivity analyses of power battery energy density, battery manufacturing energy consumption, electricity structure, and battery charge efficiency are conducted. The results show that the LFP battery is more environmentally friendly in the global warming potential (GWP) and acidification potential (AP), and the NCM battery is more environmentally friendly in abiotic depletion (fossil) (ADP(f)) and human toxicity potential (HTP). However, the LTO battery shows the highest environmental impact among the four environmental impact categories due to the lower energy density. For life cycle BEV, GWP and ADP(f) of BEV based on LFP, NCM, and LMO are lower than those of internal combustion engine vehicles (ICEV), while AP and HTP of BEV based on the four batteries are higher than those of ICEV. The grave-to-cradle (GTC) phase of vehicle has substantial environmental benefit to reduce the human toxicity emission. With the improvement of the battery density, battery charge efficiency, electricity structure, and glider lightweight level, life cycle BEVs based on the four different batteries show substantial environmental benefits for four environmental impact categories.

Suggested Citation

  • Yang Yang & Libo Lan & Zhuo Hao & Jianyou Zhao & Geng Luo & Pei Fu & Yisong Chen, 2022. "Life Cycle Prediction Assessment of Battery Electrical Vehicles with Special Focus on Different Lithium-Ion Power Batteries in China," Energies, MDPI, vol. 15(15), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5321-:d:869065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yisong Chen & Xu Hu & Jiahui Liu, 2019. "Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes," Energies, MDPI, vol. 12(15), pages 1-24, August.
    2. Jamal Mamkhezri & Leonard A. Malczynski & Janie M. Chermak, 2021. "Assessing the Economic and Environmental Impacts of Alternative Renewable Portfolio Standards: Winners and Losers," Energies, MDPI, vol. 14(11), pages 1-23, June.
    3. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    4. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    5. Yanmei Li & Ningning Ha & Tingting Li, 2019. "Research on Carbon Emissions of Electric Vehicles throughout the Life Cycle Assessment Taking into Vehicle Weight and Grid Mix Composition," Energies, MDPI, vol. 12(19), pages 1-15, September.
    6. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    7. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Szewczyk & Andrzej Łebkowski, 2022. "Comparative Studies on Batteries for the Electrochemical Energy Storage in the Delivery Vehicle," Energies, MDPI, vol. 15(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    2. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
    3. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.
    4. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    5. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    6. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    7. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    9. Yaning Zhang & Ziqiang Cao & Chunmei Zhang & Yisong Chen, 2024. "Life Cycle Assessment of Plug-In Hybrid Electric Vehicles Considering Different Vehicle Working Conditions and Battery Degradation Scenarios," Energies, MDPI, vol. 17(17), pages 1-29, August.
    10. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    11. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    12. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
    13. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    14. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    15. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    16. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA)," Energies, MDPI, vol. 16(24), pages 1-23, December.
    18. Xu Hu & Jinwei Sun & Yisong Chen & Qiu Liu & Liang Gu, 2019. "Considering Well-to-Wheels Analysis in Control Design: Regenerative Suspension Helps to Reduce Greenhouse Gas Emissions from Battery Electric Vehicles," Energies, MDPI, vol. 12(13), pages 1-19, July.
    19. Daniel Garraín & Santacruz Banacloche & Paloma Ferreira-Aparicio & Antonio Martínez-Chaparro & Yolanda Lechón, 2021. "Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses," Energies, MDPI, vol. 14(20), pages 1-15, October.
    20. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5321-:d:869065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.