IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5219-d865974.html
   My bibliography  Save this article

Pressurized Chemical Looping for Direct Reduced Iron Production: Carbon Neutral Process Configuration and Performance

Author

Listed:
  • Nicole Bond

    (Natural Resources Canada, CanmetENERGY-Ottawa, Ottawa, ON K1A 1M1, Canada)

  • Robert Symonds

    (Natural Resources Canada, CanmetENERGY-Ottawa, Ottawa, ON K1A 1M1, Canada)

  • Robin Hughes

    (Natural Resources Canada, CanmetENERGY-Ottawa, Ottawa, ON K1A 1M1, Canada)

Abstract

To achieve net-zero iron and steel production by 2050, many iron and steel producers are turning to direct reduced iron (DRI)—electric arc furnace (EAF) steel production as an opportunity to achieve significant CO 2 emissions reductions relative to current levels. However, additional innovations are required to close the gap between DRI and net-zero steel. Pressurized chemical looping-DRI (PCL-DRI) is a novel technology explored to meet this target, in which the reformer firebox and fired process gas heaters are replaced with PCL combustion units. Captured CO 2 is conditioned and compressed for pipeline transportation and storage/utilization. The performance of two different PCL-DRI configurations relative to traditional DRI processes was explored via process simulation: a Midrex-type process and an Energiron-type process. The PCL-DRI processes were shown to have equivalent or lesser total fuel consumption (8% reduction) compared to the base cases, and greater process water production (170–260% increase), with minimal or no loss in thermal efficiency. PCL-DRI is a strong competitor to alternative methods of reaching net-zero DRI due to lower energy penalties for carbon capture, no required changes to stream chemistry in or out of the EAF, and no requirement for hydrogen infrastructure.

Suggested Citation

  • Nicole Bond & Robert Symonds & Robin Hughes, 2022. "Pressurized Chemical Looping for Direct Reduced Iron Production: Carbon Neutral Process Configuration and Performance," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5219-:d:865974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
    2. Gang Xu & Feifei Liang & Yongping Yang & Yue Hu & Kai Zhang & Wenyi Liu, 2014. "An Improved CO 2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory," Energies, MDPI, vol. 7(5), pages 1-19, May.
    3. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    4. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
    5. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    6. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2019. "Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    2. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    3. Feng, Xiangdong & Liu, Shanjian & Yue, Kang & Wei, Heng & Bi, Dongmei & Zhao, Wenjing, 2023. "Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures," Energy, Elsevier, vol. 285(C).
    4. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    5. Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
    6. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    7. Sarah Hamdy & Francisco Moser & Tatiana Morosuk & George Tsatsaronis, 2019. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage," Energies, MDPI, vol. 12(3), pages 1-19, February.
    8. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    10. Michael Bampaou & Kyriakos Panopoulos & Panos Seferlis & Spyridon Voutetakis & Ismael Matino & Alice Petrucciani & Antonella Zaccara & Valentina Colla & Stefano Dettori & Teresa Annunziata Branca & Vi, 2021. "Integration of Renewable Hydrogen Production in Steelworks Off-Gases for the Synthesis of Methanol and Methane," Energies, MDPI, vol. 14(10), pages 1-24, May.
    11. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    13. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
    14. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    15. Yusuf, Noor & Almomani, Fares, 2023. "Recent advances in biogas purifying technologies: Process design and economic considerations," Energy, Elsevier, vol. 265(C).
    16. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    17. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    18. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    19. Xiaoliang Yu & Jin Yan & Rongyue Sun & Lin Mei & Yanmin Li & Shuyuan Wang & Fan Wang & Yicheng Gu, 2023. "An Experimental Study on SO 2 Emission and Ash Deposition Characteristics of High Alkali Red Mud under Large Proportional Co-Combustion Conditions in Fluidized Bed," Energies, MDPI, vol. 16(6), pages 1-17, March.
    20. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5219-:d:865974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.