IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5173-d864522.html
   My bibliography  Save this article

Assessment of Hydropower Potential in Wastewater Systems and Application in a Lowland Country, Lithuania

Author

Listed:
  • Petras Punys

    (Department of Water Engineering, Vytautas Magnus University, 10 Universiteto Str., Akademija, 53361 Kaunas, Lithuania)

  • Linas Jurevičius

    (Department of Water Engineering, Vytautas Magnus University, 10 Universiteto Str., Akademija, 53361 Kaunas, Lithuania)

Abstract

This paper focuses on possible power generation by micro-hydro turbines integrated into lowland wastewater systems, which convert the potential energy of effluents in pipes into electric power. While other European countries have widely invested in this technology, Lithuania and other Baltic countries are still behind with their potential development rate. A search for potential micro-hydro sites was carried out, and a methodology for assessing water resources for an ungauged wastewater network is proposed herein. Particularities of wastewater flow patterns are briefly reviewed, and turbine operational constraints are analyzed. The hydro turbines available on the market to be installed in wastewater systems that meet lowland conditions are discussed. Available tools on the hydropower market to conduct a preliminary assessment of potential sites for urban water networks are considered. Multicriteria analysis is performed to select optimal projects by assessing the relevant economic, technical, and environmental criteria in water networks. The outcomes of this study can be used for unlocking the hydropower potential of wastewater systems in low-lying areas.

Suggested Citation

  • Petras Punys & Linas Jurevičius, 2022. "Assessment of Hydropower Potential in Wastewater Systems and Application in a Lowland Country, Lithuania," Energies, MDPI, vol. 15(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5173-:d:864522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mauro De Marchis & Barbara Milici & Roberto Volpe & Antonio Messineo, 2016. "Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis," Energies, MDPI, vol. 9(11), pages 1-15, October.
    2. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    3. Gallagher, J. & Harris, I.M. & Packwood, A.J. & McNabola, A. & Williams, A.P., 2015. "A strategic assessment of micro-hydropower in the UK and Irish water industry: Identifying technical and economic constraints," Renewable Energy, Elsevier, vol. 81(C), pages 808-815.
    4. Bousquet, Cécile & Samora, Irene & Manso, Pedro & Rossi, Luca & Heller, Philippe & Schleiss, Anton J., 2017. "Assessment of hydropower potential in wastewater systems and application to Switzerland," Renewable Energy, Elsevier, vol. 113(C), pages 64-73.
    5. Petras Punys & Antanas Dumbrauskas & Algis Kvaraciejus & Gitana Vyciene, 2011. "Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications," Energies, MDPI, vol. 4(9), pages 1-20, August.
    6. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2014. "Low head pico hydro turbine selection using a multi-criteria analysis," Renewable Energy, Elsevier, vol. 61(C), pages 43-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    3. Ávila, Carlos Andrés Macías & Sánchez-Romero, Francisco-Javier & López-Jiménez, P. Amparo & Pérez-Sánchez, Modesto, 2021. "Optimization tool to improve the management of the leakages and recovered energy in irrigation water systems," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    5. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    6. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    7. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    8. Kucukali, Serhat & Al Bayatı, Omar & Maraş, H. Hakan, 2021. "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, Elsevier, vol. 172(C), pages 633-650.
    9. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Vincenzo Sammartano & Lorena Liuzzo & Gabriele Freni, 2019. "Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure," Energies, MDPI, vol. 12(18), pages 1-20, September.
    12. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    13. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Paweł Tomczyk & Krzysztof Mastalerek & Mirosław Wiatkowski & Alban Kuriqi & Jakub Jurasz, 2023. "Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant," Energies, MDPI, vol. 16(20), pages 1-19, October.
    15. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    16. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    17. Nishi, Yasuyuki & Itoh, Natsumi & Fukutomi, Junichiro, 2022. "Performance and radial thrust of single-blade reverse running pump turbine," Renewable Energy, Elsevier, vol. 201(P1), pages 499-513.
    18. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    19. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    20. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5173-:d:864522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.