IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5106-d861636.html
   My bibliography  Save this article

Unified Fuzzy Logic Based Approach for Detection and Classification of PV Faults Using I-V Trend Line

Author

Listed:
  • Imran Hussain

    (Department of Electrical Engineering, University of Engineering and Technology, Taxila 47050, Pakistan)

  • Ihsan Ullah Khalil

    (College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Aqsa Islam

    (Department of Physics, University of Agriculture, Faisalabad 38000, Pakistan)

  • Mati Ullah Ahsan

    (Department of Electrical Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat 86400, Malaysia)

  • Taosif Iqbal

    (College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Md. Shahariar Chowdhury

    (Faculties Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • Kuaanan Techato

    (Faculties Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • Nasim Ullah

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

Solar photovoltaic PV plants worldwide are continuously monitored and carefully protected to ensure safe and reliable operation through detecting and isolating faults. Faults are very common in modern solar PV systems which interrupt normal system operation adversely affecting the performance of the PV systems. When undetected, faults not only cause significant reduction in the efficiency and life span of the PV system, but also result in damage and fire hazards compromising their reliability. Therefore, early fault detection and diagnosis of photovoltaic plants is a necessity for safe and reliable operation required for growing solar PV systems. Unfortunately, several recent fire incidents have been reported recently caused by undetected faults in solar PV systems. Motivated by this challenge, this paper, utilizing a proposed fuzzy logic algorithm, presents a novel technique for detecting and classifying faults in solar PV systems. Furthermore, the proposed method introduces fault indexing as a performance indicator that measures the degree of deviation from the normal operating conditions of the photovoltaic system. Various signatures of each fault scenario are identified in the shape of corresponding current-voltage trajectories and their extracted parameters. The effectiveness of the proposed technique is evaluated both in simulation and experimentally using a 5 kW grid connected solar array. It is demonstrated that the proposed technique is capable of diagnosing the occurrence of different faults with more than 98% accuracy.

Suggested Citation

  • Imran Hussain & Ihsan Ullah Khalil & Aqsa Islam & Mati Ullah Ahsan & Taosif Iqbal & Md. Shahariar Chowdhury & Kuaanan Techato & Nasim Ullah, 2022. "Unified Fuzzy Logic Based Approach for Detection and Classification of PV Faults Using I-V Trend Line," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5106-:d:861636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    2. Das, Saborni & Hazra, Abhik & Basu, Mousumi, 2018. "Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance," Renewable Energy, Elsevier, vol. 118(C), pages 452-467.
    3. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    4. Qiang Zhao & Shuai Shao & Lingxing Lu & Xin Liu & Honglu Zhu, 2018. "A New PV Array Fault Diagnosis Method Using Fuzzy C-Mean Clustering and Fuzzy Membership Algorithm," Energies, MDPI, vol. 11(1), pages 1-21, January.
    5. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    3. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    4. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    5. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    6. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    7. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    8. Ahmed A. Al-Katheri & Essam A. Al-Ammar & Majed A. Alotaibi & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi, 2022. "Application of Artificial Intelligence in PV Fault Detection," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    9. Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
    10. Wang, Haizheng & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2019. "Probability modeling for PV array output interval and its application in fault diagnosis," Energy, Elsevier, vol. 189(C).
    11. Ramadoss Janarthanan & R. Uma Maheshwari & Prashant Kumar Shukla & Piyush Kumar Shukla & Seyedali Mirjalili & Manoj Kumar, 2021. "Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems," Energies, MDPI, vol. 14(20), pages 1-19, October.
    12. Juan M. Cano & Aranzazu D. Martin & Reyes S. Herrera & Jesus R. Vazquez & Francisco Javier Ruiz-Rodriguez, 2021. "Grid-Connected PV Systems Controlled by Sliding via Wireless Communication," Energies, MDPI, vol. 14(7), pages 1-17, March.
    13. Hao Wu & Lin Zhou & Yihao Wan & Qiang Liu & Siyu Zhou, 2019. "A Mixed Uncertainty Power Flow Algorithm-Based Centralized Photovoltaic (PV) Cluster," Energies, MDPI, vol. 12(20), pages 1-16, October.
    14. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    15. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    16. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    17. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    18. Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    19. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    20. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5106-:d:861636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.