IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5065-d860476.html
   My bibliography  Save this article

Remote Power Generation for Applications to Natural Gas Grid: A Comprehensive Market Review of Techno-Energetic, Economic and Environmental Performance

Author

Listed:
  • Luca Da Lio

    (Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Andrea Lazzaretto

    (Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy)

Abstract

The operation of natural gas grids requires electric-powered devices as data acquisition and control systems, surveillance and communication appliances, etc., often located in remote, unpopulated off-the-grid areas, where there is no personnel for surveillance, and maintenance costs are prohibitive. The literature on the power generating systems for these devices is limited to specific applications without a comparison between competing technologies, making their choice a difficult task for natural gas operators. This work presents a comprehensive up-to-date survey of market available technologies for remote power generation in the range of 20–1000 W for gas grid applications: thermoelectric generators, solid acid, direct methanol and solid oxide fuel cells, Stirling engines and microturbines. The work aims at sorting the technologies by techno-energetic, economic and environmental performance while providing specific technological characteristics and limitations. The results indicate well-defined ranges of power in which only some of the technologies are suitable and have very different efficiencies (3–30%). The capital cost of equal power technologies is similar (EUR 5000–30,000) and roughly linear with power (34.8P el + EUR 6553), whereas operation costs (10–120 cEUR/kWh) and lifetime (0.5–20 yr) significantly depend on the technology. The indications of this review may constitute helpful guidelines to choose properly power generation systems for remote applications.

Suggested Citation

  • Luca Da Lio & Andrea Lazzaretto, 2022. "Remote Power Generation for Applications to Natural Gas Grid: A Comprehensive Market Review of Techno-Energetic, Economic and Environmental Performance," Energies, MDPI, vol. 15(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5065-:d:860476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    2. Eugene C.X. Ikejemba & Peter C. Schuur, 2018. "Analyzing the Impact of Theft and Vandalism in Relation to the Sustainability of Renewable Energy Development Projects in Sub-Saharan Africa," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Pagliaro, 2020. "Father Verspieren and Mali Aqua Viva: Lessons Learned from Fighting Drought and Poverty with Photovoltaic Solar Energy in Africa," Sustainability, MDPI, vol. 12(8), pages 1-8, April.
    2. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    3. Remiorz, Leszek & Kotowicz, Janusz & Uchman, Wojciech, 2018. "Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump," Energy, Elsevier, vol. 148(C), pages 134-147.
    4. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    5. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    6. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    7. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    10. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    11. Jacek Kropiwnicki & Mariusz Furmanek, 2020. "A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines," Energies, MDPI, vol. 13(7), pages 1-21, April.
    12. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    13. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    14. Jose Egas & Don M. Clucas, 2018. "Stirling Engine Configuration Selection," Energies, MDPI, vol. 11(3), pages 1-22, March.
    15. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    16. Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
    17. Duran, Asligul Serasu & Sahinyazan, Feyza G., 2021. "An analysis of renewable mini-grid projects for rural electrification," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    18. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    19. de la Bat, B.J.G. & Dobson, R.T. & Harms, T.M. & Bell, A.J., 2020. "Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator," Applied Energy, Elsevier, vol. 263(C).
    20. Pedro Branco & Francisco Gonçalves & Ana Cristina Costa, 2020. "Tailored Algorithms for Anomaly Detection in Photovoltaic Systems," Energies, MDPI, vol. 13(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5065-:d:860476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.