IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4355-d838939.html
   My bibliography  Save this article

Excess Energy from PV-Battery System Installations: A Case of Rural Health Center in Tigray, Ethiopia

Author

Listed:
  • Mulu Bayray Kahsay

    (Department of Electronics and Information Systems, Gent University, 9052 Ghent, Belgium
    School of Mechanical and Industrial Engineering, Mekelle University, Mekelle P.O. Box 231, Ethiopia)

  • Johan Lauwaert

    (Department of Electronics and Information Systems, Gent University, 9052 Ghent, Belgium)

Abstract

PV-Battery systems are commonly sized based on the lowest solar radiation of the site of implementation. This implies that during days of high solar radiation excess energy is available. This study investigated the potential of excess energy for thermal storage from PV systems for a case of a rural health center. The system components of a typical PV installation in a rural health center in Tigray, Ethiopia, were considered. The electricity load profile of the health center and solar radiation data available from Mekelle city were used as inputs to a TRNSYS model. Analysis of excess energy in the system at hourly and ten-minute time intervals was conducted. The analysis results indicate that during the months from September to May excess energy was available that could be thermally stored and utilized. During these months, the excess peak power ranged from 737 to 841 W and daily average excess energy ranged from 2070 to 2959 Wh. In contrast, in the months from June to August, no excess energy was available due to low solar radiation.

Suggested Citation

  • Mulu Bayray Kahsay & Johan Lauwaert, 2022. "Excess Energy from PV-Battery System Installations: A Case of Rural Health Center in Tigray, Ethiopia," Energies, MDPI, vol. 15(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4355-:d:838939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    2. Tarragona, Joan & Fernández, Cèsar & de Gracia, Alvaro, 2020. "Model predictive control applied to a heating system with PV panels and thermal energy storage," Energy, Elsevier, vol. 197(C).
    3. Yildiz, Baran & Bilbao, Jose I. & Roberts, Mike & Heslop, Simon & Dore, Jonathon & Bruce, Anna & MacGill, Iain & Egan, Renate J. & Sproul, Alistair B., 2021. "Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asrin Seyedzahedi & Salah Bahramara, 2023. "Facilitating Investment in Photovoltaic Systems in Iran Considering Time-of-Use Feed-in-Tariff and Carbon Market," Energies, MDPI, vol. 16(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    2. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    3. Ahmet Feyzioglu, 2023. "A Study on the Control System of Electric Water Heaters for Decarbonization," Energies, MDPI, vol. 16(5), pages 1-12, March.
    4. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    5. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    6. Wang, Haichao & Zhou, Yang & Li, Xiangli & Wu, Xiaozhou & Wang, Hai & Elnaz, Abdollahi & Granlund, Katja & Lahdelma, Risto & Teppo, Esa, 2023. "Study on the performance of a forced convection low temperature radiator for district heating," Energy, Elsevier, vol. 283(C).
    7. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    8. Michael J. Ritchie & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Centrally Adapted Optimal Control of Multiple Electric Water Heaters," Energies, MDPI, vol. 15(4), pages 1-24, February.
    9. Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    10. Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
    11. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    12. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2024. "Multi-time scale dynamic operation optimization method for industrial park electricity-heat-gas integrated energy system considering demand elasticity," Energy, Elsevier, vol. 293(C).
    13. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Energy, Elsevier, vol. 249(C).
    14. Tang, Hong & Wang, Shengwei, 2023. "Life-cycle economic analysis of thermal energy storage, new and second-life batteries in buildings for providing multiple flexibility services in electricity markets," Energy, Elsevier, vol. 264(C).
    15. Clift, Dean Holland & Hasan, Kazi N. & Rosengarten, Gary, 2024. "Peer-to-peer energy trading for demand response of residential smart electric storage water heaters," Applied Energy, Elsevier, vol. 353(PB).
    16. Yildiz, Baran & Roberts, Mike & Bilbao, Jose I. & Heslop, Simon & Bruce, Anna & Dore, Jonathon & MacGill, Iain & Egan, Renate J. & Sproul, Alistair B., 2021. "Assessment of control tools for utilizing excess distributed photovoltaic generation in domestic electric water heating systems," Applied Energy, Elsevier, vol. 300(C).
    17. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Working Papers "Sustainability and Innovation" S04/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
    19. Li, Li & Dong, Mi & Song, Dongran & Yang, Jian & Wang, Qibing, 2022. "Distributed and real-time economic dispatch strategy for an islanded microgrid with fair participation of thermostatically controlled loads," Energy, Elsevier, vol. 261(PB).
    20. Taler, Dawid & Sobota, Tomasz & Jaremkiewicz, Magdalena & Taler, Jan, 2022. "Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4355-:d:838939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.