IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4340-d838463.html
   My bibliography  Save this article

Modeling of Floor Heave in Underground Roadways in Dry and Waterlogged Conditions

Author

Listed:
  • Piotr Małkowski

    (Department of Geomechanics, Civil Engineering and Geotechnics, Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Łukasz Ostrowski

    (Department of Geomechanics, Civil Engineering and Geotechnics, Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Jerzy Stasica

    (Department of Mining Engineering and Occupational Safety, Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

Floor heaving is a phenomenon that occurs in almost all mining roadways and tunnels. It can restrain the advance of the heading face or cause serious problems during roadway use. The highest levels of floor uplifting are observed in coal mines, which can reduce the output or even stop it altogether. The floor heaving intensity depends on the rock type, the stress in the rock mass, and rocks’ mechanical properties. Floor deformation develops when the secondary state of stress is formed around the working, and it is much higher and more dynamic in the case of waterlogged rocks. The presence of water increases the floor’s propensity to heave, especially clay rocks, such as claystones or mudstones, if they include water-absorbed minerals. In this paper, we present a new modeling methodology for roadway floor heave. The modeling covers a dry floor condition in which the parameters of the Hoek-Brown failure criterion are gradually lowered over time, and a waterlogged floor condition, in which the strength and strain parameters of the rocks are gradually reduced in line with their progressive saturation. In the second case, the claystone floor’s geomechanical parameters were investigated, and the rocks were subjected to water for up to 24 h. The results of the numerical simulation were compared with the in situ measurements of convergence and floor heave in the same coal mines from which the rock samples were collected. The consistency between the numerical simulations and the underground measurements reached 90–99%.

Suggested Citation

  • Piotr Małkowski & Łukasz Ostrowski & Jerzy Stasica, 2022. "Modeling of Floor Heave in Underground Roadways in Dry and Waterlogged Conditions," Energies, MDPI, vol. 15(12), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4340-:d:838463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Gong & Zhanguo Ma & Xiaoyan Ni & Ray Ruichong Zhang, 2017. "Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining," Energies, MDPI, vol. 10(12), pages 1-19, December.
    2. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    3. Gangye Guo & Hongpu Kang & Deyu Qian & Fuqiang Gao & Yang Wang, 2018. "Mechanism for Controlling Floor Heave of Mining Roadways Using Reinforcing Roof and Sidewalls in Underground Coal Mine," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    4. Xingping Lai & Huicong Xu & Pengfei Shan & Yanlei Kang & Zeyang Wang & Xuan Wu, 2020. "Research on Mechanism and Control of Floor Heave of Mining-Influenced Roadway in Top Coal Caving Working Face," Energies, MDPI, vol. 13(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuerui Yang & Fenghai Yu & Chengfu Ma & Tao Zhang & Bo Wang & Xin Zhao, 2023. "Study on Floor Heave Characteristics and the Control Method of Gob-Side Entry Driving in Weakly Cemented Soft Rock," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    2. Łukasz Bołoz & Zbigniew Rak & Jerzy Stasica, 2022. "Comparative Analysis of the Failure Rates of Shearer and Plow Systems—A Case Study," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Deqiu Wang & Yun Zheng & Fulian He & Jiayu Song & Jianlong Zhang & Yanhao Wu & Pengpeng Jia & Xiaohui Wang & Baoping Liu & Feifei Wang & Yajiang Zhang & Kai Tao, 2023. "Mechanism and Control of Asymmetric Floor Heave in the Gob-Side Coal Roadway under Mining Pressure in Extra-Thick Coal Seams," Energies, MDPI, vol. 16(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    2. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    3. Housheng Jia & Luyao Wang & Kai Fan & Bo Peng & Kun Pan, 2019. "Control Technology of Soft Rock Floor in Mining Roadway with Coal Pillar Protection: A case study," Energies, MDPI, vol. 12(15), pages 1-21, August.
    4. Deqiu Wang & Yun Zheng & Fulian He & Jiayu Song & Jianlong Zhang & Yanhao Wu & Pengpeng Jia & Xiaohui Wang & Baoping Liu & Feifei Wang & Yajiang Zhang & Kai Tao, 2023. "Mechanism and Control of Asymmetric Floor Heave in the Gob-Side Coal Roadway under Mining Pressure in Extra-Thick Coal Seams," Energies, MDPI, vol. 16(13), pages 1-19, June.
    5. Huaidong Liu & Changyou Liu & Ya’nan Dong, 2022. "Theoretical Study on the Mechanism of Asymmetrical Large Deformation of Heading Roadway Facing Mining," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    6. Qiang Zhang & Jixiong Zhang & Zhongya Wu & Yang Chen, 2019. "Overview of Solid Backfilling Technology Based on Coal-Waste Underground Separation in China," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    7. Hanghang Zheng & Zhenqian Ma & Lang Zhou & Dongyue Zhang & Xuchao Liang, 2022. "Effect of Loading Rate and Confining Pressure on Strength and Energy Characteristics of Mudstone under Pre-Cracking Damage," Energies, MDPI, vol. 15(10), pages 1-15, May.
    8. Yongli Liu & Jingtao Li & Yanwei Duan & Tao Qin & Zhenwen Liu, 2023. "Study on the Influence of Roadway Structural Morphology on the Mechanical Properties of Weakly Cemented Soft Rock Roadways," Sustainability, MDPI, vol. 15(1), pages 1-16, January.
    9. Krzysztof Krauze & Kamil Mucha & Tomasz Wydro & Ryszard Klempka & Andrzej Kutnik & Waldemar Hałas & Piotr Ruda, 2022. "Determining the Stability of a Mobile Manipulator for the Transport and Assembly of Arches in the Yielding Arch Support," Energies, MDPI, vol. 15(9), pages 1-17, April.
    10. Shuaigang Liu & Jianbiao Bai & Xiangyu Wang & Shuai Yan & Jiaxin Zhao, 2021. "Field and Numerical Study on Deformation and Failure Characteristics of Deep High-Stress Main Roadway in Dongpang Coal Mine," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    11. Yi Xue & Zhengzheng Cao & Feng Du & Lin Zhu, 2018. "The Influence of the Backfilling Roadway Driving Sequence on the Rockburst Risk of a Coal Pillar Based on an Energy Density Criterion," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    12. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    13. Xingping Lai & Huicong Xu & Pengfei Shan & Yanlei Kang & Zeyang Wang & Xuan Wu, 2020. "Research on Mechanism and Control of Floor Heave of Mining-Influenced Roadway in Top Coal Caving Working Face," Energies, MDPI, vol. 13(2), pages 1-14, January.
    14. Kamil Szewerda & Jarosław Tokarczyk & Andrzej Wieczorek, 2021. "Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail," Energies, MDPI, vol. 14(6), pages 1-15, March.
    15. Yu Liu & Jingzhong Zhu & Qimeng Liu & Anying Yuan & Shifang He & Yisheng Bai, 2022. "Mechanism Analysis of Delayed Water Inrush from Karst Collapse Column during Roadway Excavation Based on Seepage Transition Theory: A Case Study in PanEr Coal Mine," Energies, MDPI, vol. 15(14), pages 1-13, July.
    16. Wenqiang Mu & Lianchong Li & Zhongping Guo & Zhaowen Du & Sixu Wang, 2019. "Novel Segmented Roadside Plugging-Filling Mining Method and Overlying Rock Mechanical Mechanism Analyses," Energies, MDPI, vol. 12(11), pages 1-20, May.
    17. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    18. Zhiyi Zhang & Hideki Shimada, 2018. "Numerical Study on the Effectiveness of Grouting Reinforcement on the Large Heaving Floor of the Deep Retained Goaf-Side Gateroad: A Case Study in China," Energies, MDPI, vol. 11(4), pages 1-15, April.
    19. Zexin Li & Yidong Zhang & Qi Ma & Yu Zheng & Guangyuan Song & Wanzi Yan & Yu Zhang & Lei Hu, 2023. "The Floor Heave Mechanism and Control Technology of Gob-Side Entry Retaining of Soft Rock Floor," Sustainability, MDPI, vol. 15(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4340-:d:838463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.