IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4987-d858093.html
   My bibliography  Save this article

Mechanism Analysis of Delayed Water Inrush from Karst Collapse Column during Roadway Excavation Based on Seepage Transition Theory: A Case Study in PanEr Coal Mine

Author

Listed:
  • Yu Liu

    (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China)

  • Jingzhong Zhu

    (School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China)

  • Qimeng Liu

    (School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China)

  • Anying Yuan

    (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China)

  • Shifang He

    (Coal Company, Huaihe Energy (Group) Co., Ltd., Huainan 232001, China)

  • Yisheng Bai

    (Coal Company, Huaihe Energy (Group) Co., Ltd., Huainan 232001, China)

Abstract

Water inrush disaster is one of the major disasters affecting the production safety of coal mines following roof caving, fire, gas outburst, and dust explosion disasters. It is urgent to reveal the water inrush mechanism and take effective measures to prevent the disasters. More than 80% of water inrush accidents occur around geological structural zones such as faults and karst collapse columns (KCCs). The water inrush events from KCCs caused huge economic losses and heavy casualties, and the water inrush process often shows certain hysteresis characteristics. Taking the water inrush disaster from a KCC during roadway excavation in PanEr Coal Mine of Huainan Mining Area as the case study, the delayed inrush mechanism of KCC was analyzed from the aspects of floor failure, KCC activation, seepage transition, and water inrush development characteristics. The results show that the rock mechanical properties and the excavation depth are the main factors affecting the floor failure characteristics. The seepage transformation from pore flow to fracture flow and pipeline flow, with the change in internal composition structure, is the internal mechanism of the delayed water inrush from KCC. The research is of great significance for the prediction and prevention of water inrush disasters from KCCs.

Suggested Citation

  • Yu Liu & Jingzhong Zhu & Qimeng Liu & Anying Yuan & Shifang He & Yisheng Bai, 2022. "Mechanism Analysis of Delayed Water Inrush from Karst Collapse Column during Roadway Excavation Based on Seepage Transition Theory: A Case Study in PanEr Coal Mine," Energies, MDPI, vol. 15(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4987-:d:858093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xingping Lai & Huicong Xu & Pengfei Shan & Yanlei Kang & Zeyang Wang & Xuan Wu, 2020. "Research on Mechanism and Control of Floor Heave of Mining-Influenced Roadway in Top Coal Caving Working Face," Energies, MDPI, vol. 13(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    3. Hanghang Zheng & Zhenqian Ma & Lang Zhou & Dongyue Zhang & Xuchao Liang, 2022. "Effect of Loading Rate and Confining Pressure on Strength and Energy Characteristics of Mudstone under Pre-Cracking Damage," Energies, MDPI, vol. 15(10), pages 1-15, May.
    4. Yongli Liu & Jingtao Li & Yanwei Duan & Tao Qin & Zhenwen Liu, 2023. "Study on the Influence of Roadway Structural Morphology on the Mechanical Properties of Weakly Cemented Soft Rock Roadways," Sustainability, MDPI, vol. 15(1), pages 1-16, January.
    5. Piotr Małkowski & Łukasz Ostrowski & Jerzy Stasica, 2022. "Modeling of Floor Heave in Underground Roadways in Dry and Waterlogged Conditions," Energies, MDPI, vol. 15(12), pages 1-27, June.
    6. Deqiu Wang & Yun Zheng & Fulian He & Jiayu Song & Jianlong Zhang & Yanhao Wu & Pengpeng Jia & Xiaohui Wang & Baoping Liu & Feifei Wang & Yajiang Zhang & Kai Tao, 2023. "Mechanism and Control of Asymmetric Floor Heave in the Gob-Side Coal Roadway under Mining Pressure in Extra-Thick Coal Seams," Energies, MDPI, vol. 16(13), pages 1-19, June.
    7. Zexin Li & Yidong Zhang & Qi Ma & Yu Zheng & Guangyuan Song & Wanzi Yan & Yu Zhang & Lei Hu, 2023. "The Floor Heave Mechanism and Control Technology of Gob-Side Entry Retaining of Soft Rock Floor," Sustainability, MDPI, vol. 15(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4987-:d:858093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.