IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15065-d972403.html
   My bibliography  Save this article

Theoretical Study on the Mechanism of Asymmetrical Large Deformation of Heading Roadway Facing Mining

Author

Listed:
  • Huaidong Liu

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Changyou Liu

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Ya’nan Dong

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The problem of asymmetric large deformation of surrounding rock of heading roadways is prominent due to the superposition of mining stress in the mining intersection area. Therefore, on the basis of the background of 18,106 tailentry in the Xiegou Coal Mine, this paper establishes a mechanical model of surrounding rock deformation of mining roadways under the effect of advanced abutment pressure. In the model, we deduce the theoretical calculation formula of roadway full-section deformation and discuss the influence factors of roadway surrounding rock deformation. Accordingly, the deformation mechanism of surrounding rock of mining roadways and the engineering suggestions and measures are revealed. The main results and finding are threefold. Firstly, the increase of the stress concentration factor of the coal pillar rib and the increase of the width of the failure zone are the fundamental reasons leading to the aggravation of the surrounding rock deformation on the side of the coal pillar in the heading roadway. Secondly, the deformation of the coal pillar rib increases with the increase of stress concentration factor and decreases with the increase of coal cohesion, internal friction angle, elastic modulus, and roadway rib support resistance. Additionally, the deformation of the roadway roof and floor decreases with the increase of roadway rib support resistance and is inversely proportional to the cubic power of rock beam thickness and elastic modulus. The deformation rate of the roadway roof and floor increases with the increase of vertical stress concentration factor of the coal pillar rib, and the maximum deformation position shifts to the side of the coal pillar. Therefore, increasing the strength and stiffness of the roadway surrounding rock and the supporting resistance of surrounding rock can reduce the deformation of roadway surrounding rock and the influence of advanced abutment pressure on roadway deformation. In the end, the rationality and feasibility of the theoretical analysis is verified through an engineering example. Under the influence of advanced abutment pressure, the deformation of roadway floor heave is the most severe, the asymmetrical deformation on both sides of the roadway is remarkable, and the deformation of coal pillar side is about twice that of solid coal side.

Suggested Citation

  • Huaidong Liu & Changyou Liu & Ya’nan Dong, 2022. "Theoretical Study on the Mechanism of Asymmetrical Large Deformation of Heading Roadway Facing Mining," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15065-:d:972403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Gong & Zhanguo Ma & Xiaoyan Ni & Ray Ruichong Zhang, 2017. "Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining," Energies, MDPI, vol. 10(12), pages 1-19, December.
    2. Qingliang Chang & Shiguo Ge & Xianyuan Shi & Yesong Sun & Haibin Wang & Mengda Li & Yizhe Wang & Fengfeng Wu, 2022. "Determination of Narrow Coal Pillar Width and Roadway Surrounding Rock Support Technology in Gob Driving Roadway," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    3. Zenghui Zhao & Qing Ma & Shaojie Chen & He Ma & Xiaojie Gao, 2018. "Prediction Model of Failure Zone in Roadway Sidewall considering the Lithologic Effect of Rock Formation," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, July.
    4. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Małkowski & Łukasz Ostrowski & Jerzy Stasica, 2022. "Modeling of Floor Heave in Underground Roadways in Dry and Waterlogged Conditions," Energies, MDPI, vol. 15(12), pages 1-27, June.
    2. Qiang Zhang & Jixiong Zhang & Zhongya Wu & Yang Chen, 2019. "Overview of Solid Backfilling Technology Based on Coal-Waste Underground Separation in China," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    3. Changhao Shan & Shenggen Cao & Zeyu Zhang & Kewen Lin & Jialong Sun, 2023. "Numerical Investigation on the Yield Pillar Bearing Capacity under the Two-End-Type Cable Reinforcement," Energies, MDPI, vol. 16(18), pages 1-17, September.
    4. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    5. Krzysztof Krauze & Kamil Mucha & Tomasz Wydro & Ryszard Klempka & Andrzej Kutnik & Waldemar Hałas & Piotr Ruda, 2022. "Determining the Stability of a Mobile Manipulator for the Transport and Assembly of Arches in the Yielding Arch Support," Energies, MDPI, vol. 15(9), pages 1-17, April.
    6. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    7. Xingping Lai & Huicong Xu & Pengfei Shan & Yanlei Kang & Zeyang Wang & Xuan Wu, 2020. "Research on Mechanism and Control of Floor Heave of Mining-Influenced Roadway in Top Coal Caving Working Face," Energies, MDPI, vol. 13(2), pages 1-14, January.
    8. Kamil Szewerda & Jarosław Tokarczyk & Andrzej Wieczorek, 2021. "Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail," Energies, MDPI, vol. 14(6), pages 1-15, March.
    9. Wenqiang Mu & Lianchong Li & Zhongping Guo & Zhaowen Du & Sixu Wang, 2019. "Novel Segmented Roadside Plugging-Filling Mining Method and Overlying Rock Mechanical Mechanism Analyses," Energies, MDPI, vol. 12(11), pages 1-20, May.
    10. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    11. Housheng Jia & Luyao Wang & Kai Fan & Bo Peng & Kun Pan, 2019. "Control Technology of Soft Rock Floor in Mining Roadway with Coal Pillar Protection: A case study," Energies, MDPI, vol. 12(15), pages 1-21, August.
    12. Deqiu Wang & Yun Zheng & Fulian He & Jiayu Song & Jianlong Zhang & Yanhao Wu & Pengpeng Jia & Xiaohui Wang & Baoping Liu & Feifei Wang & Yajiang Zhang & Kai Tao, 2023. "Mechanism and Control of Asymmetric Floor Heave in the Gob-Side Coal Roadway under Mining Pressure in Extra-Thick Coal Seams," Energies, MDPI, vol. 16(13), pages 1-19, June.
    13. Zhiyi Zhang & Hideki Shimada, 2018. "Numerical Study on the Effectiveness of Grouting Reinforcement on the Large Heaving Floor of the Deep Retained Goaf-Side Gateroad: A Case Study in China," Energies, MDPI, vol. 11(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15065-:d:972403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.