IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4031-d828317.html
   My bibliography  Save this article

An Agent-Based Model of Heterogeneous Driver Behaviour and Its Impact on Energy Consumption and Costs in Urban Space

Author

Listed:
  • Sedar Olmez

    (School of Geography, University of Leeds, Seminary St, Woodhouse, Leeds LS2 9JT, UK
    The Alan Turing Institute, 2QR, John Dodson House, 96 Euston Rd, London NW1 2DB, UK)

  • Jason Thompson

    (Transport, Health and Urban Design Research Laboratory, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia)

  • Ellie Marfleet

    (School of Geography, University of Leeds, Seminary St, Woodhouse, Leeds LS2 9JT, UK)

  • Keiran Suchak

    (School of Geography, University of Leeds, Seminary St, Woodhouse, Leeds LS2 9JT, UK)

  • Alison Heppenstall

    (The Alan Turing Institute, 2QR, John Dodson House, 96 Euston Rd, London NW1 2DB, UK
    School of Social & Political Sciences, University of Glasgow, Adam Smith Building, Bute Gardens, Glasgow G12 8RT, UK)

  • Ed Manley

    (School of Geography, University of Leeds, Seminary St, Woodhouse, Leeds LS2 9JT, UK
    The Alan Turing Institute, 2QR, John Dodson House, 96 Euston Rd, London NW1 2DB, UK)

  • Annabel Whipp

    (School of Geography, University of Leeds, Seminary St, Woodhouse, Leeds LS2 9JT, UK)

  • Rajith Vidanaarachchi

    (Transport, Health and Urban Design Research Laboratory, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia)

Abstract

By 2020, over 100 countries had expanded electric and plug-in hybrid electric vehicle (EV/PHEV) technologies, with global sales surpassing 7 million units. Governments are adopting cleaner vehicle technologies due to the proven environmental and health implications of internal combustion engine vehicles (ICEVs), as evidenced by the recent COP26 meeting. This article proposes an agent-based model of vehicle activity as a tool for quantifying energy consumption by simulating a fleet of EV/PHEVs within an urban street network at various spatio-temporal resolutions. Driver behaviour plays a significant role in energy consumption; thus, simulating various levels of individual behaviour and enhancing heterogeneity should provide more accurate results of potential energy demand in cities. The study found that (1) energy consumption is lowest when speed limit adherence increases (low variance in behaviour) and is highest when acceleration/deceleration patterns vary (high variance in behaviour); (2) vehicles that travel for shorter distances while abiding by speed limit rules are more energy efficient compared to those that speed and travel for longer; and (3) on average, for tested vehicles, EV/PHEVs were £233.13 cheaper to run than ICEVs across all experiment conditions. The difference in the average fuel costs (electricity and petrol) shrinks at the vehicle level as driver behaviour is less varied (more homogeneous). This research should allow policymakers to quantify the demand for energy and subsequent fuel costs in cities.

Suggested Citation

  • Sedar Olmez & Jason Thompson & Ellie Marfleet & Keiran Suchak & Alison Heppenstall & Ed Manley & Annabel Whipp & Rajith Vidanaarachchi, 2022. "An Agent-Based Model of Heterogeneous Driver Behaviour and Its Impact on Energy Consumption and Costs in Urban Space," Energies, MDPI, vol. 15(11), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4031-:d:828317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    2. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    3. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    4. Alison Heppenstall & Andrew Evans & Mark Birkin, 2006. "Using Hybrid Agent-Based Systems to Model Spatially-Influenced Retail Markets," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-2.
    5. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    6. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    7. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    8. Herbert Dawid & Michael Neugart, 2011. "Agent-based Models for Economic Policy Design," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 44-50.
    9. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    2. Tushar Gahlaut & Gourav Dwivedi, 2024. "A Comprehensive Study for Multi-Criteria Comparison of EV, ICEV, and HEV," Papers 2404.11705, arXiv.org, revised Jun 2024.
    3. Sanguinetti, Angela & Alston-Stepnitz, Eli & Cimene, Angelika, 2020. "Facilitating Electric Vehicle Adoption with Vehicle Cost Calculators," Institute of Transportation Studies, Working Paper Series qt368290kp, Institute of Transportation Studies, UC Davis.
    4. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    5. Sanguinetti, Angela & Favetti, Matthew & Hirschfelt, Kate & Kong, Nathaniel & Chakraborty, Debapriya & Alston-Stepnitz, Eli & Ma, Howard, 2023. "Developing a Vehicle Cost Calculator to Promote Electric Vehicle Adoption Among TNC Drivers," Institute of Transportation Studies, Working Paper Series qt1v44b5kp, Institute of Transportation Studies, UC Davis.
    6. Gajanan B. Haldankar & Swati Bhat & Kavir Kashinath Shirodkar & Amit Subramanyam, 2024. "Electric Vehicle Revolution in India: A Comprehensive and Comparative Study of Ev Business in India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 150-159, March.
    7. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Siskos, Pelopidas & Moysoglou, Yannis, 2019. "Assessing the impacts of setting CO2 emission targets on truck manufacturers: A model implementation and application for the EU," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 123-138.
    9. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    10. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    11. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
    12. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    13. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    14. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    15. Cirunay, Michelle T. & Batac, Rene C., 2023. "Evolution of the periphery of a self-organized road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    16. Robert J.R. Elliott & Viet Nguyen-Tien & Eric Strobl & Chengyu Zhang, 2024. "Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?," CEP Discussion Papers dp1972, Centre for Economic Performance, LSE.
    17. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    18. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    19. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    20. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4031-:d:828317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.