IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3958-d825626.html
   My bibliography  Save this article

Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines

Author

Listed:
  • Leszek Chomacki

    (Building Research Institute, 00611 Warsaw, Poland)

  • Janusz Rusek

    (Department of Engineering Surveying and Civil Engineering, AGH University of Science and Technology, 30059 Cracow, Poland)

  • Leszek Słowik

    (Building Research Institute, 00611 Warsaw, Poland)

Abstract

This paper presents the results of comparative studies on the implementation of machine learning methods in the damage intensity assessment of masonry buildings. The research was performed on existing residential buildings, subjected to negative impacts of the industrial environment induced by coal mining plants during their whole technical life cycle. The research was justified on the grounds of safety of use, as well as potential energy losses and CO 2 emissions generated by the inefficient management of building materials resources resulting from poor planning of retrofitting. In this field, the research is in line with the global trends of large-scale retrofitting of existing buildings in European countries due to their thermal insulation parameters and seismic hazard. By combining this with the effects of material degradation throughout the technical lifecycle of buildings, the proposed methods allow for a more efficient approach to maintaining quality management of large groups of buildings, which is part of the sustainable development framework. Due to the multidimensionality of the undertaken problem and the necessity of mathematical representation of uncertainty, it was decided to implement a machine learning approach. The effectiveness of the following methods was analysed: probabilistic neural network, support vector machine, naive Bayes classification and Bayesian belief networks. The complexity of individual methods dictated the order of the adopted research horizon. Within such a research plan, both model parameters were learned, and model structure was extracted from the data, which was applied only to the approach based on Bayesian networks. The results of the conducted analyses were verified by assuming classification accuracy measures. Thus, a method was extracted that allows for the best realisation of the set research objective, which was to create a classification system to assess the intensity of damage to masonry buildings. The paper also presents in detail the characteristics of the described buildings, which were used as input variables, and assesses the effectiveness of the obtained results in terms of utilisation in practice.

Suggested Citation

  • Leszek Chomacki & Janusz Rusek & Leszek Słowik, 2022. "Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines," Energies, MDPI, vol. 15(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3958-:d:825626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Artur Guzy & Wojciech T. Witkowski, 2021. "Land Subsidence Estimation for Aquifer Drainage Induced by Underground Mining," Energies, MDPI, vol. 14(15), pages 1-36, July.
    2. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    3. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    4. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    5. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.
    2. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    3. Adrian Jędrzejczyk & Karol Firek & Janusz Rusek, 2022. "Convolutional Neural Network and Support Vector Machine for Prediction of Damage Intensity to Multi-Storey Prefabricated RC Buildings," Energies, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    2. Yi-Sheng Chao & Marco Scutari & Tai-Shen Chen & Chao-Jung Wu & Madeleine Durand & Antoine Boivin & Hsing-Chien Wu & Wei-Chih Chen, 2018. "A network perspective of engaging patients in specialist and chronic illness care: The 2014 International Health Policy Survey," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    5. Vuong, Quan-Hoang & La, Viet-Phuong, 2019. "The bayesvl R package. User guide v0.8.1," OSF Preprints w5dx6, Center for Open Science.
    6. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    7. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    8. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    9. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    10. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
    11. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    12. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    13. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    14. Piotr Strzałkowski, 2022. "Predicting Mining Areas Deformations under the Condition of High Strength and Depth of Cover," Energies, MDPI, vol. 15(13), pages 1-17, June.
    15. Myriam Patricia Cifuentes & Clara Mercedes Suarez & Ricardo Cifuentes & Noel Malod-Dognin & Sam Windels & Jose Fernando Valderrama & Paul D. Juarez & R. Burciaga Valdez & Cynthia Colen & Charles Phill, 2022. "Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    16. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    17. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    18. Silvia de Juan & Maria Dulce Subida & Andres Ospina-Alvarez & Ainara Aguilar & Miriam Fernandez, 2020. "Disentangling the socio-ecological drivers behind illegal fishing in a small-scale fishery managed by a TURF system," Papers 2012.08970, arXiv.org.
    19. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    20. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3958-:d:825626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.