IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2689-d550172.html
   My bibliography  Save this article

Measuring the Energy Efficiency of Evaporative Systems through a New Index—EvaCOP

Author

Listed:
  • Alexandre F. Santos

    (Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    FAPRO—Professional College, Curitiba 80230-040, Brazil)

  • Pedro D. Gaspar

    (Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    C-MAST—Centre for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal)

  • Heraldo J. L. Souza

    (FAPRO—Professional College, Curitiba 80230-040, Brazil)

Abstract

Evaporative systems are probably the oldest technology for thermal comfort. However, they are still an essential technology in the food industry, environments for thermal comfort, and even for cooling data centers. Standards have been improved to compare the energy efficiency of this type of equipment. Using AHRI concepts with temperature data from the 29 most populous cities in the world, an EvaCOP index was created from temperatures that are easier to simulate than current parameters. The index parameters were tested in a laboratory located in Curitiba (Brazil). EvaCOP values of 45.58 and 25.77 W/W were found in the calculation in two different simulated equipment and compared with the compression cycle systems that in the most efficient machines is around 6.29 W/W.

Suggested Citation

  • Alexandre F. Santos & Pedro D. Gaspar & Heraldo J. L. Souza, 2021. "Measuring the Energy Efficiency of Evaporative Systems through a New Index—EvaCOP," Energies, MDPI, vol. 14(9), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2689-:d:550172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramadas Narayanan & Edward Halawa & Sanjeev Jain, 2018. "Performance Characteristics of Solid-Desiccant Evaporative Cooling Systems," Energies, MDPI, vol. 11(10), pages 1-14, September.
    2. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadas Narayanan & Subbu Sethuvenkatraman & Roberto Pippia, 2022. "Energy and Comfort Evaluation of Fresh Air-Based Hybrid Cooling System in Hot and Humid Climates," Energies, MDPI, vol. 15(20), pages 1-13, October.
    2. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    3. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    4. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    5. Ramadas Narayanan & Edward Halawa & Sanjeev Jain, 2019. "Dehumidification Potential of a Solid Desiccant Based Evaporative Cooling System with an Enthalpy Exchanger Operating in Subtropical and Tropical Climates," Energies, MDPI, vol. 12(14), pages 1-18, July.
    6. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    7. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    8. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    9. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    10. Aili, Ablimit & Long, Wenjun & Cao, Zhiwei & Wen, Yonggang, 2024. "Radiative free cooling for energy and water saving in data centers," Applied Energy, Elsevier, vol. 359(C).
    11. Win-Jet Luo & Dini Faridah & Fikri Rahmat Fasya & Yu-Sheng Chen & Fikri Hizbul Mulki & Utami Nuri Adilah, 2019. "Performance Enhancement of Hybrid Solid Desiccant Cooling Systems by Integrating Solar Water Collectors in Taiwan," Energies, MDPI, vol. 12(18), pages 1-18, September.
    12. Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
    13. Lei, Nuoa & Masanet, Eric & Koomey, Jonathan, 2021. "Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations," Energy Policy, Elsevier, vol. 156(C).
    14. Wang, Zhiying & Wang, Yang & Ji, Haoran & Hasanien, Hany M. & Zhao, Jinli & Yu, Lei & He, Jiafeng & Yu, Hao & Li, Peng, 2024. "Distributionally robust planning for data center park considering operational economy and reliability," Energy, Elsevier, vol. 290(C).
    15. Matteo Manganelli & Alessandro Soldati & Luigi Martirano & Seeram Ramakrishna, 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    16. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    17. Shuo Liu & Chang-Ho Jeong & Myoung-Souk Yeo, 2020. "Effect of Evaporator Position on Heat Pump Assisted Solid Desiccant Cooling Systems," Energies, MDPI, vol. 13(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2689-:d:550172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.