IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2554-d546107.html
   My bibliography  Save this article

Experimental Study on Mechanical Properties of Hydrate-Bearing Sand: The Influence of Sand-Water Mixing Methods

Author

Listed:
  • Weiguo Liu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Dedong Pan

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Shi Shen

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Zeshao You

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yuechao Zhao

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Xiang Sun

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

Abstract

Laboratory-synthesized specimens are employed for an experimental study on the mechanical properties of hydrate-bearing sediments (HBS) due to the difficulty of field coring. A representative synthesized sample for the analysis of the mechanical properties of HBS in the experimental study requires evenly distributed hydrates in the pores of the sample. However, a specimen made with an improper sand–water mixing method might have an uneven water distribution, resulting in an uneven hydrate distribution when applying the ice-seeding method for hydrate formation. This study adopted three kinds of methods to mix sand and water before forming hydrates and applied the low-field nuclear magnetic resonance (NMR) technique to investigate how these methods affect the hydrate distribution, further affecting the mechanical properties. To analyze the mechanical properties of HBS, we conducted drained triaxial tests. As shown in low-field NMR, when we compacted a sample of the sand–water mixture and froze it upside-down before hydrate formation, a sample with an even water distribution was obtained. Subsequently, the hydrate in HBS distributed also evenly. The stress-strain curves present different strain softening and hardening patterns due to the different hydrate distributions. Moreover, the samples with the evenly distributed hydrates have higher initial elastic modulus and strength than the ones made with other methods.

Suggested Citation

  • Weiguo Liu & Dedong Pan & Shi Shen & Zeshao You & Yuechao Zhao & Xiang Sun, 2021. "Experimental Study on Mechanical Properties of Hydrate-Bearing Sand: The Influence of Sand-Water Mixing Methods," Energies, MDPI, vol. 14(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2554-:d:546107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    2. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    3. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Hua & Chen, Huie & Kong, Fansheng & Luo, Yonggui, 2023. "Failure mode and the mechanism of methane hydrate-bearing clayey sand sediments under depressurization," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    2. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    3. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    4. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    5. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    6. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    7. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    8. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    9. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    10. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    11. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    12. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    13. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    14. Panagiotis Kastanidis & George E. Romanos & Athanasios K. Stubos & Georgia Pappa & Epaminondas Voutsas & Ioannis N. Tsimpanogiannis, 2024. "Evaluation of a Simplified Model for Three-Phase Equilibrium Calculations of Mixed Gas Hydrates," Energies, MDPI, vol. 17(2), pages 1-22, January.
    15. Xiaoxu, Duan & Jiwei, Wu & Yuan, Huang & Haitao, Lin & Shouwei, Zhou & Junlong, Zhu & Shaohua, Nie & Guorong, Wang & Liang, Ma & Hualin, Wang, 2023. "Achieving effective and simultaneous consolidation breaking and sand removal in solid fluidization development of natural gas hydrate," Applied Energy, Elsevier, vol. 351(C).
    16. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    17. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    18. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    19. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    20. Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2554-:d:546107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.