IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1786-d522858.html
   My bibliography  Save this article

Energy Efficiency Analysis of Copper Ore Ball Mill Drive Systems

Author

Listed:
  • Piotr Bortnowski

    (Department of Mining and Geodesy, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-421 Wroclaw, Poland)

  • Lech Gładysiewicz

    (Department of Mining and Geodesy, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-421 Wroclaw, Poland)

  • Robert Król

    (Department of Mining and Geodesy, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-421 Wroclaw, Poland)

  • Maksymilian Ozdoba

    (Department of Mining and Geodesy, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-421 Wroclaw, Poland)

Abstract

Milling is among the most energy-consuming technological stages of copper ore processing. It is performed in mills, which are machines of high rotational masses. The start of a mill filled to capacity requires appropriate solutions that mitigate the overloading. One method for increasing the energy efficiency of ball mills is to optimize their drive systems. This article looks at two variants of drive systems with efficiencies higher than the already existing solutions. The first variant is a low-speed synchronous motor with permanent magnets without a gearbox, and the second variant is an asynchronous high-efficiency motor with a gearbox and a fluid coupling. The energy performance analysis of the three solutions was based on the average energy consumption indicator per mass unit of the milled material and on the energy consumption per hour. The investigations required models of the drive systems and analyses with the use of the Monte Carlo methods. The highest energy efficiency is observed in the case of the solution based on the permanent magnet motor. However, the drive system with the high-speed motor offers a gentle start-up possibility owing to the fluid coupling.

Suggested Citation

  • Piotr Bortnowski & Lech Gładysiewicz & Robert Król & Maksymilian Ozdoba, 2021. "Energy Efficiency Analysis of Copper Ore Ball Mill Drive Systems," Energies, MDPI, vol. 14(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1786-:d:522858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tesema, Gudise & Worrell, Ernst, 2015. "Energy efficiency improvement potentials for the cement industry in Ethiopia," Energy, Elsevier, vol. 93(P2), pages 2042-2052.
    2. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    2. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    3. Paweł Strzałkowski, 2021. "Characteristics of Waste Generated in Dimension Stone Processing," Energies, MDPI, vol. 14(21), pages 1-16, November.
    4. Adam Wróblewski & Pavlo Krot & Radosław Zimroz & Timo Mayer & Jyri Peltola, 2023. "Review of Linear Electric Motor Hammers—An Energy-Saving and Eco-Friendly Solution in Industry," Energies, MDPI, vol. 16(2), pages 1-28, January.
    5. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Sergey Zhironkin, 2022. "Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support," Energies, MDPI, vol. 15(3), pages 1-15, January.
    6. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    7. Ryszard Błażej & Leszek Jurdziak & Agata Kirjanów-Błażej & Mirosław Bajda & Dominika Olchówka & Aleksandra Rzeszowska, 2022. "Profitability of Conveyor Belt Refurbishment and Diagnostics in the Light of the Circular Economy and the Full and Effective Use of Resources," Energies, MDPI, vol. 15(20), pages 1-15, October.
    8. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    9. Zare Banadkouki, Mohammad Reza, 2023. "Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS," Energy, Elsevier, vol. 279(C).
    10. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    2. Chien-Ming Wang & Tsung-Pao Wu, 2022. "Does tourism promote or reduce environmental pollution? Evidence from major tourist arrival countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3334-3355, March.
    3. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    4. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    5. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    6. Giacomo Di Foggia & Massimo Beccarello & Marco Borgarello & Francesca Bazzocchi & Stefano Moscarelli, 2022. "Market-Based Instruments to Promote Energy Efficiency: Insights from the Italian Case," Energies, MDPI, vol. 15(20), pages 1-16, October.
    7. Joakim Haraldsson & Simon Johnsson & Patrik Thollander & Magnus Wallén, 2021. "Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries," Energies, MDPI, vol. 14(12), pages 1-26, June.
    8. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    9. Wojciech Chmielewski & Marta Postuła & Przemysław Dubel, 2023. "The Impact of Expenditure on Research and Development on Selected Energy Factors in the European Union," Energies, MDPI, vol. 16(8), pages 1-18, April.
    10. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).
    11. Farooq, Umar & Ahmed, Jaleel & Shahbaz, Muhammad, 2022. "How various energy sources affect industrial investment? Empirical evidence from Asian economies," Energy, Elsevier, vol. 248(C).
    12. Minh Nguyen Dat & Kien Duong Trung & Phap Vu Minh & Chau Dinh Van & Quynh T. Tran & Trung Nguyen Ngoc, 2023. "Assessment of Energy Efficiency Using an Energy Monitoring System: A Case Study of a Major Energy-Consuming Enterprise in Vietnam," Energies, MDPI, vol. 16(13), pages 1-15, July.
    13. Bahman Huseynli, 2023. "Effect of Exports of Goods and Services and Energy Consumption in Italy`s Service Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 254-261, May.
    14. Irene Bosco, & Vito Pipitone, 2022. "M&A in the Italian energy market," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(3), pages 17-28, July-Sept.
    15. A S M Monjurul Hasan & Mohammad Rokonuzzaman & Rashedul Amin Tuhin & Shah Md. Salimullah & Mahfuz Ullah & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Drivers and Barriers to Industrial Energy Efficiency in Textile Industries of Bangladesh," Energies, MDPI, vol. 12(9), pages 1-19, May.
    16. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    17. Carlo Fezzi & Valeria Fanghella, 2020. "Real-Time Estimation of the Short-Run Impact of COVID-19 on Economic Activity Using Electricity Market Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 885-900, August.
    18. Carmen Díaz-López & Andrés Navarro-Galera & Montserrat Zamorano & Dionisio Buendía-Carrillo, 2021. "Identifying Public Policies to Promote Sustainable Building: A Proposal for Governmental Drivers Based on Stakeholder Perceptions," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    19. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    20. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1786-:d:522858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.