IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1768-d522123.html
   My bibliography  Save this article

Conversion of Slaughterhouse Wastes to Solid Fuel Using Hydrothermal Carbonization

Author

Listed:
  • Jongkeun Lee

    (Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea)

  • Sungwan Cho

    (Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea)

  • Daegi Kim

    (Department of Environmental Engineering, College of Engineering, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea)

  • JunHee Ryu

    (Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea)

  • Kwanyong Lee

    (Department of Environment and Public Health, College of Health Science, Jangan University, Gyeonggi 18331, Gyeonggi-do, Korea)

  • Haegeun Chung

    (Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea)

  • Ki Young Park

    (Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea)

Abstract

In this study, cattle and pig slaughterhouse wastes (SHWs) were hydrothermally carbonized at 150–300 °C, and the properties of SHW-derived hydrochar were evaluated for its use as a solid fuel. The results demonstrated that increasing the hydrothermal carbonization (HTC) treatment temperature improved the energy-related properties (i.e., fuel ratio, higher heating value, and coalification degree) of both the cattle and pig SHW-derived hydrochars. However, the improvements of cattle SHW-derived hydrochars were not as dramatic as that of pig SHW-derived hydrochars, due to the lipid-rich components that do not participate in the HTC reaction. In this regard, there was no merit of using HTC treatment on cattle SHW for the production of hydrochar or using the hydrochar as a solid fuel in terms of energy retention efficiency. On the other hand, a mild HTC treatment at approximately 200 °C was deemed suitable for converting pig SHW to value-added solid fuel. The findings of this study suggest that the conversion of SHWs to hydrochar using HTC can provide an environmentally benign method for waste treatment and energy recovery from abandoned biomass. However, the efficiency of energy recovery varies depending on the chemical composition of the raw feedstock.

Suggested Citation

  • Jongkeun Lee & Sungwan Cho & Daegi Kim & JunHee Ryu & Kwanyong Lee & Haegeun Chung & Ki Young Park, 2021. "Conversion of Slaughterhouse Wastes to Solid Fuel Using Hydrothermal Carbonization," Energies, MDPI, vol. 14(6), pages 1-10, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1768-:d:522123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jongkeun Lee & Oh Kyung Choi & Dooyoung Oh & Kawnyong Lee & Ki Young Park & Daegi Kim, 2020. "Stimulation of Lipid Extraction Efficiency from Sewage Sludge for Biodiesel Production through Hydrothermal Pretreatment," Energies, MDPI, vol. 13(23), pages 1-10, December.
    2. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    3. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    4. Poritosh Roy & Animesh Dutta & Jim Gallant, 2018. "Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy," Energies, MDPI, vol. 11(10), pages 1-14, October.
    5. Zhiyu Li & Weiming Yi & Zhihe Li & Chunyan Tian & Peng Fu & Yuchun Zhang & Ling Zhou & Jie Teng, 2020. "Preparation of Solid Fuel Hydrochar over Hydrothermal Carbonization of Red Jujube Branch," Energies, MDPI, vol. 13(2), pages 1-10, January.
    6. Amber Broch & Umakanta Jena & S. Kent Hoekman & Joel Langford, 2013. "Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae," Energies, MDPI, vol. 7(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doyoon Ryu & Jongkeun Lee & Doyong Kim & Kyehwan Jang & Jongwook Lee & Daegi Kim, 2022. "Enhancement of the Biofuel Characteristics of Empty Fruit Bunches through Hydrothermal Carbonization by Decreasing the Inorganic Matters," Energies, MDPI, vol. 15(21), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    2. Gabriel Gerner & Luca Meyer & Rahel Wanner & Thomas Keller & Rolf Krebs, 2021. "Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production," Energies, MDPI, vol. 14(9), pages 1-12, May.
    3. Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
    4. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    7. Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
    8. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    9. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    10. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    11. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    12. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    13. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    14. Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.
    15. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    16. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    17. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    18. Magdalini Tsarpali & John N. Kuhn & George P. Philippidis, 2022. "Hydrothermal Carbonization of Residual Algal Biomass for Production of Hydrochar as a Biobased Metal Adsorbent," Sustainability, MDPI, vol. 14(1), pages 1-17, January.
    19. Heiner Brookman & Fabian Gievers & Volker Zelinski & Jan Ohlert & Achim Loewen, 2018. "Influence of Hydrothermal Carbonization on Composition, Formation and Elimination of Biphenyls, Dioxins and Furans in Sewage Sludge," Energies, MDPI, vol. 11(6), pages 1-13, June.
    20. Pagés-Díaz, Jhosané & Cerda Alvarado, Andrés Osvaldo & Montalvo, Silvio & Diaz-Robles, Luis & Curio, César Huiliñir, 2020. "Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses," Renewable Energy, Elsevier, vol. 157(C), pages 182-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1768-:d:522123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.