IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1703-d519974.html
   My bibliography  Save this article

Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment

Author

Listed:
  • Mohamed A. Hassaan

    (Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt)

  • Ahmed El Nemr

    (Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt)

  • Marwa R. Elkatory

    (Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 21934, Egypt)

  • Ahmed Eleryan

    (Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt)

  • Safaa Ragab

    (Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt)

  • Amany El Sikaily

    (Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt)

  • Antonio Pantaleo

    (Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy)

Abstract

One of the dominant species of green algae growing along the Mediterranean coast of Egypt is Ulva lactuca . Pretreatment can have a major effect on biogas production because hydrolysis of the algae cell wall structure is a rate-limiting stage in the anaerobic digestion (AD) process. The use of ozone, a new pretreatment, to boost biogas production from the green algae Ulva lactuca was investigated in this study. Ozonation at various dosages was used in contrast to untreated biomass, and the effect on the performance of subsequent mesophilic AD using two separate inoculums (cow manure and activated sludge) was examined. The findings indicated that, in different studies, ozonation pretreatment showed a substantial increase in biogas yield relative to untreated algae. With an ozone dose of 249 mg O 3 g –1 VS algal for Ulva lactuca , the highest biogas output (498.75 mL/g VS) was achieved using cow manure inoculum. The evaluation of FTIR, TGA, SEM, and XRD revealed the impact of O 3 on the structure of the algal cell wall and integrity breakage, which was thus established as the main contributor to improving the biogas production.

Suggested Citation

  • Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Ahmed Eleryan & Safaa Ragab & Amany El Sikaily & Antonio Pantaleo, 2021. "Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment," Energies, MDPI, vol. 14(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1703-:d:519974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.
    2. Mao, Chunlan & Wang, Xiaojiao & Xi, Jianchao & Feng, Yongzhong & Ren, Guangxin, 2017. "Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion," Energy, Elsevier, vol. 135(C), pages 352-360.
    3. Tsapekos, P. & Kougias, P.G. & Egelund, H. & Larsen, U. & Pedersen, J. & Trénel, P. & Angelidaki, I., 2017. "Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses," Renewable Energy, Elsevier, vol. 111(C), pages 914-921.
    4. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    5. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    6. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    7. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    8. Kwietniewska, Ewa & Tys, Jerzy, 2014. "Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 491-500.
    9. Cheng, Jay J. & Timilsina, Govinda R., 2011. "Status and barriers of advanced biofuel technologies: A review," Renewable Energy, Elsevier, vol. 36(12), pages 3541-3549.
    10. Feng, Lu & Perschke, Yolanda Maria Lemes & Fontaine, Doline & Ward, Alastair James & Eriksen, Jørgen & Sørensen, Peter & Møller, Henrik Bjarne, 2019. "Co-ensiling of cover crops and barley straw for biogas production," Renewable Energy, Elsevier, vol. 142(C), pages 677-683.
    11. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    12. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvydas Zagorskis & Akvilė Gotovskienė & Vladimir Monin, 2023. "Quality Assessment of Biogas-Producing Macroalgae from Azov Sea and Šventoji River," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    2. Hassaan, Mohamed A. & Elkatory, Marwa R. & El-Nemr, Mohamed A. & Ragab, Safaa & Yi, Xiaohui & Huang, Mingzhi & El Nemr, Ahmed, 2024. "Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca," Renewable Energy, Elsevier, vol. 221(C).
    3. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    4. Rubén Agregán & José M. Lorenzo & Manoj Kumar & Mohammad Ali Shariati & Muhammad Usman Khan & Abid Sarwar & Muhammad Sultan & Maksim Rebezov & Muhammad Usman, 2022. "Anaerobic Digestion of Lignocellulose Components: Challenges and Novel Approaches," Energies, MDPI, vol. 15(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    2. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    3. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    5. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    6. Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.
    7. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Intaramas, Kanpichcha & Jonglertjunya, Woranart & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2018. "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis," Energy, Elsevier, vol. 149(C), pages 837-847.
    9. Tamilarasan, K. & Kavitha, S. & Selvam, Ammaiyappan & Rajesh Banu, J. & Yeom, Ick Tae & Nguyen, Dinh Duc & Saratale, Ganesh Dattatraya, 2018. "Cost-effective, low thermo-chemo disperser pretreatment for biogas production potential of marine macroalgae Chaetomorpha antennina," Energy, Elsevier, vol. 163(C), pages 533-545.
    10. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    11. Rodriguez, Cristina & Alaswad, Abed & El-Hassan, Zaki & Olabi, Abdul G., 2018. "Waste paper and macroalgae co-digestion effect on methane production," Energy, Elsevier, vol. 154(C), pages 119-125.
    12. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    13. Hassaan, Mohamed A. & Elkatory, Marwa R. & El-Nemr, Mohamed A. & Ragab, Safaa & Yi, Xiaohui & Huang, Mingzhi & El Nemr, Ahmed, 2024. "Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca," Renewable Energy, Elsevier, vol. 221(C).
    14. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    15. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    16. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    17. Tedesco, S. & Daniels, S., 2019. "Evaluation of inoculum acclimatation and biochemical seasonal variation for the production of renewable gaseous fuel from biorefined Laminaria sp. waste streams," Renewable Energy, Elsevier, vol. 139(C), pages 1-8.
    18. Ali, Hamdy Elsayed Ahmed & El-fayoumy, Eman A. & Soliman, Ramadan M. & Elkhatat, Ahmed & Al-Meer, Saeed & Elsaid, Khaled & Hussein, Hanaa Ali & Zul Helmi Rozaini, Mohd & Azmuddin Abdullah, Mohd, 2024. "Nanoparticle applications in Algal-biorefinery for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    20. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1703-:d:519974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.