IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1563-d515543.html
   My bibliography  Save this article

Noninvasive Detection of Appliance Utilization Patterns in Residential Electricity Demand

Author

Listed:
  • Fernanda Spada Villar

    (School of Electrical and Computer Engineering, State University of Campinas, Campinas-SP 13083-852, Brazil)

  • Pedro Henrique Juliano Nardelli

    (Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Arun Narayanan

    (Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Renan Cipriano Moioli

    (Digital Metropolis Institute, Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal-RN 59078-900, Brazil)

  • Hader Azzini

    (School of Electrical and Computer Engineering, State University of Campinas, Campinas-SP 13083-852, Brazil)

  • Luiz Carlos Pereira da Silva

    (School of Electrical and Computer Engineering, State University of Campinas, Campinas-SP 13083-852, Brazil)

Abstract

Smart meters with automatic meter reading functionalities are becoming popular across the world. As a result, load measurements at various sampling frequencies are now available. Several methods have been proposed to infer device usage characteristics from household load measurements. However, many techniques are based on highly intensive computations that incur heavy computational costs; moreover, they often rely on private household information. In this paper, we propose a technique for the detection of appliance utilization patterns using low-computational-cost algorithms that do not require any information about households. Appliance utilization patterns are identified only from the system status behavior, represented by large system status datasets, by using dimensionality reduction and clustering algorithms. Principal component analysis, k-means, and the elbow method are used to define the clusters, and the minimum spanning tree is used to visualize the results that show the appearance of utilization patterns. Self organizing maps are used to create a system status classifier. We applied our techniques to two public datasets from two different countries, the United Kingdom (UK-DALE) and the US (REDD), with different usage patterns. The proposed clustering techniques enable effective demand-side management, while the system status classifier can detect appliance malfunctions only through system status analyses.

Suggested Citation

  • Fernanda Spada Villar & Pedro Henrique Juliano Nardelli & Arun Narayanan & Renan Cipriano Moioli & Hader Azzini & Luiz Carlos Pereira da Silva, 2021. "Noninvasive Detection of Appliance Utilization Patterns in Residential Electricity Demand," Energies, MDPI, vol. 14(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1563-:d:515543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    2. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    3. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    4. Sa, Aida & Thollander, Patrik & Cagno, Enrico, 2017. "Assessing the driving factors for energy management program adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 538-547.
    5. Christos Athanasiadis & Dimitrios Doukas & Theofilos Papadopoulos & Antonios Chrysopoulos, 2021. "A Scalable Real-Time Non-Intrusive Load Monitoring System for the Estimation of Household Appliance Power Consumption," Energies, MDPI, vol. 14(3), pages 1-23, February.
    6. Naspolini, Helena F. & Rüther, Ricardo, 2016. "The effect of measurement time resolution on the peak time power demand reduction potential of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 88(C), pages 325-332.
    7. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    8. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    9. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    10. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantin Hopf & Mariya Sodenkamp & Thorsten Staake, 2018. "Enhancing energy efficiency in the residential sector with smart meter data analytics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(4), pages 453-473, November.
    2. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    3. Akito Ozawa & Ryota Furusato & Yoshikuni Yoshida, 2017. "Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    4. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    6. Peter Bergman, 2020. "Nudging Technology Use: Descriptive and Experimental Evidence from School Information Systems," Education Finance and Policy, MIT Press, vol. 15(4), pages 623-647, Fall.
    7. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    8. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2020. "Conveyance, envy, and homeowner choice of appliances," Energy Economics, Elsevier, vol. 89(C).
    9. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    10. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    11. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Beatty, Timothy K.M. & Katare, Bhagyashree, 2018. "Low-cost approaches to increasing gym attendance," Journal of Health Economics, Elsevier, vol. 61(C), pages 63-76.
    13. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    14. Elena Claire Ricci, 2013. "Smart-Grids and Climate Change. Consumer adoption of smart energy behaviour: a system dynamics approach to evaluate the mitigation potential," Working Papers 2013.71, Fondazione Eni Enrico Mattei.
    15. Ajla Cosic & Hana Cosic & Sebastian Ille, 2018. "Can nudges affect students' green behaviour? A field experiment," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 2(1), pages 107-111, March.
    16. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Bartels, Lara & Kesternich, Martin, 2022. "Motivate the crowd or crowd- them out? The impact of local government spending on the voluntary provision of a green public good," ZEW Discussion Papers 22-040, ZEW - Leibniz Centre for European Economic Research.
    18. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    19. Cristiano Codagnone & Giuseppe Alessandro Veltri & Francesco Bogliacino & Francisco Lupiáñez-Villanueva & George Gaskell & Andriy Ivchenko & Pietro Ortoleva & Francesco Mureddu, 2016. "Labels as nudges? An experimental study of car eco-labels," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 33(3), pages 403-432, December.
    20. Schleich, Joachim & Alsheimer, Sven, 2024. "The relationship between willingness to pay and carbon footprint knowledge: Are individuals willing to pay more to offset their carbon footprint if they learn about its size and distance to the 1.5 °C," Ecological Economics, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1563-:d:515543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.