IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p961-d497975.html
   My bibliography  Save this article

The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases

Author

Listed:
  • Gabriel Constantino de Lima

    (Federal Institute of Education, Science and Technology (IFRN), Natal 59015-000, Brazil)

  • Andre Luiz Lopes Toledo

    (Federal Institute of Education, Science and Technology (IFRN), Natal 59015-000, Brazil)

  • Leonidas Bourikas

    (School of Architecture, Imagination Lancaster, LICA, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

The energy sector and electricity generation in particular, is responsible for a great share of the global greenhouse gas (GHG) emissions. World electricity generation is still largely based on the burning of fossil fuels. However, Brazil has already a very low electricity carbon intensity due to the country’s large hydropower capacity. In countries with low grid carbon intensities such as Brazil, the investment in photovoltaic solar systems (PVSS) even if it is cost-effective, might become challenging as any new generation competes essentially against other renewable generation and the carbon offset is not a key driver for investment anymore. This study builds further upon that case to examine if national renewable energy incentives could actually lead to an increase of global net carbon emissions from the installation of PVSS in countries with a low grid carbon intensity. The study presents a life cycle analysis (LCA) of ten photovoltaic systems representative of the different operational conditions in regions across Brazil. It was found that the average energy payback time of the studied PV plants is between 3 and 5 years of operation. This result shows the feasibility and viability of such investments in the Brazilian context. When the LCA was integrated into the analysis though, the results showed that the “local” direct emissions avoidance from two out of ten studied PV plants would not manage to offset their “global” life cycle emissions due to the 2020 projected Brazilian grid emission factor which is already low. It is important to recognize that public policies of unrestricted, unconditional stimulus to photovoltaic systems investment might not help towards reducing global net emissions when the PV systems are installed at countries with a low carbon emission electric matrix. That is also something to consider for other countries as the carbon intensity of their grids will start reducing at levels similar to Brazil’s. It is likely that in the near future, the real net carbon offset achieved by PV systems at the global level will be largely defined by the manufacture procedures and the production’s carbon intensity at the country of origin of the PV panels.

Suggested Citation

  • Gabriel Constantino de Lima & Andre Luiz Lopes Toledo & Leonidas Bourikas, 2021. "The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases," Energies, MDPI, vol. 14(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:961-:d:497975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    2. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    3. Alexander T. Dale & André Frossard Pereira de Lucena & Joe Marriott & Bruno Soares Moreira Cesar Borba & Roberto Schaeffer & Melissa M. Bilec, 2013. "Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil," Energies, MDPI, vol. 6(7), pages 1-27, July.
    4. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    5. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    6. Breyer, Christian & Koskinen, Otto & Blechinger, Philipp, 2015. "Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 610-628.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    8. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    10. Pinto, Aimé & Zilles, Roberto, 2014. "Reactive power excess charging in grid-connected PV systems in Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 47-52.
    11. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    12. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    13. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    14. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Müller, Dario & Chartouni, Daniel, 2022. "Implications on EROI and climate change of introducing Li-ion batteries to residential PV systems," Applied Energy, Elsevier, vol. 326(C).
    2. Battisti, L., 2023. "Energy, power, and greenhouse gas emissions for future transition scenarios," Energy Policy, Elsevier, vol. 179(C).
    3. Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
    4. Aşkın, Asmin & Kılkış, Şiir & Akınoğlu, Bülent Gültekin, 2023. "Recycling photovoltaic modules within a circular economy approach and a snapshot for Türkiye," Renewable Energy, Elsevier, vol. 208(C), pages 583-596.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    2. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    3. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    4. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    5. Bravi, Mirko & Parisi, Maria Laura & Tiezzi, Enzo & Basosi, Riccardo, 2011. "Life cycle assessment of a micromorph photovoltaic system," Energy, Elsevier, vol. 36(7), pages 4297-4306.
    6. Mansouri, Noura Y. & Crookes, Roy J. & Korakianitis, Theodosios, 2013. "A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics," Energy Policy, Elsevier, vol. 63(C), pages 681-695.
    7. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
    8. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    9. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    10. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    11. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.
    12. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    13. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    14. Costa, Vinicius B.F. & Capaz, Rafael S. & Silva, Patrícia F. & Doyle, Gabriel & Aquila, Giancarlo & Coelho, Éden O. & de Lorenci, Eliane & Pereira, Lígia C. & Maciel, Letícia B. & Balestrassi, Pedro P, 2022. "Socioeconomic and environmental consequences of a new law for regulating distributed generation in Brazil: A holistic assessment," Energy Policy, Elsevier, vol. 169(C).
    15. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    16. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    17. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    18. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    19. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    20. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:961-:d:497975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.