IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v169y2022ics0301421522003986.html
   My bibliography  Save this article

Socioeconomic and environmental consequences of a new law for regulating distributed generation in Brazil: A holistic assessment

Author

Listed:
  • Costa, Vinicius B.F.
  • Capaz, Rafael S.
  • Silva, Patrícia F.
  • Doyle, Gabriel
  • Aquila, Giancarlo
  • Coelho, Éden O.
  • de Lorenci, Eliane
  • Pereira, Lígia C.
  • Maciel, Letícia B.
  • Balestrassi, Pedro P.
  • Bonatto, Benedito D.
  • da Silva, Luiz C.

Abstract

Since 2012, prosumer compensation in Brazil has been based on net metering. However, a new law (Ordinary Law 14300/2022) was recently approved by the Brazilian Congress to decrease financial compensations for electricity injected into the grid. Studies on distributed generation system economic feasibility impacts in light of this new regulation are quite common. However, there is a research gap with respect to holistic assessments. This paper holistically analyzes the long-term consequences of this new law for regulating on-grid renewable distributed generation in Brazil. The methodology was mainly based on three models/techniques, i.e., the optimized tariff model (socioeconomic regulated electricity market model), the Bass diffusion model (time-series forecasting for integrated distributed generation), and life cycle assessment (an environmental impact analysis technique). These methodologies allow us to evaluate regulatory impacts on several aspects like the distributed generation business itself, market surpluses and welfare, regulated tariffs, social inequality, and the environment. These methodologies were applied to 35 Brazilian concession areas with available data. The results show that the new law successfully mitigates tariff increases and reduces social inequality, which are its main goals. By contrast, there are significant negative implications to the distributed generation business, market welfare, and the environment, since socioeconomic welfare losses at 2.12 billion (BRL/year) or 0.42 billion (USD/year), and emissions at 0.35 (Mt CO2eq/year) are estimated. Our assessment also shows that it would be slightly premature to implement this new law in most concession areas.

Suggested Citation

  • Costa, Vinicius B.F. & Capaz, Rafael S. & Silva, Patrícia F. & Doyle, Gabriel & Aquila, Giancarlo & Coelho, Éden O. & de Lorenci, Eliane & Pereira, Lígia C. & Maciel, Letícia B. & Balestrassi, Pedro P, 2022. "Socioeconomic and environmental consequences of a new law for regulating distributed generation in Brazil: A holistic assessment," Energy Policy, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522003986
    DOI: 10.1016/j.enpol.2022.113176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522003986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Vinicius B.F. & Pereira, Lígia C. & Andrade, Jorge V.B. & Bonatto, Benedito D., 2022. "Future assessment of the impact of the COVID-19 pandemic on the electricity market based on a stochastic socioeconomic model," Applied Energy, Elsevier, vol. 313(C).
    2. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    3. Shubbak, Mahmood H., 2019. "The technological system of production and innovation: The case of photovoltaic technology in China," Research Policy, Elsevier, vol. 48(4), pages 993-1015.
    4. Eskew, John & Ratledge, Meredith & Wallace, Michael & Gheewala, Shabbir H. & Rakkwamsuk, Pattana, 2018. "An environmental Life Cycle Assessment of rooftop solar in Bangkok, Thailand," Renewable Energy, Elsevier, vol. 123(C), pages 781-792.
    5. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    6. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    7. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    8. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Towards a smart grid power system in Brazil: Challenges and opportunities," Energy Policy, Elsevier, vol. 136(C).
    9. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    10. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    11. Mundo-Hernández, Julia & de Celis Alonso, Benito & Hernández-Álvarez, Julia & de Celis-Carrillo, Benito, 2014. "An overview of solar photovoltaic energy in Mexico and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 639-649.
    12. Andrade, Jorge Vleberton Bessa de & Rodrigues, Bruno Noronha & Santos, Ivan Felipe Silva dos & Haddad, Jamil & Tiago Filho, Geraldo Lúcio, 2020. "Constitutional aspects of distributed generation policies for promoting Brazilian economic development," Energy Policy, Elsevier, vol. 143(C).
    13. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    14. Shan, Jun & Yu, Mingzhu & Lee, Chung-Yee, 2014. "An empirical investigation of the seaport’s economic impact: Evidence from major ports in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 41-53.
    15. de Oliveira Pinto Coelho, Eden & Aquila, Giancarlo & Bonatto, Benedito Donizeti & Balestrassi, Pedro Paulo & de Oliveira Pamplona, Edson & Nakamura, Wilson Toshiro, 2021. "Regulatory impact of photovoltaic prosumer policies in Brazil based on a financial risk analysis," Utilities Policy, Elsevier, vol. 70(C).
    16. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    17. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    18. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2017. "Life cycle impact assessment of photovoltaic power generation from crystalline silicon-based solar modules in Nigeria," Renewable Energy, Elsevier, vol. 101(C), pages 537-549.
    19. Sherwani, A.F. & Usmani, J.A. & Varun, 2010. "Life cycle assessment of solar PV based electricity generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 540-544, January.
    20. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    21. Vazquez, Miguel & Hallack, Michelle, 2018. "The role of regulatory learning in energy transition: The case of solar PV in Brazil," Energy Policy, Elsevier, vol. 114(C), pages 465-481.
    22. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    23. Chihyun Jung & Dae-Eun Lim, 2016. "Development of an Adaptive Forecasting System: A Case Study of a PC Manufacturer in South Korea," Sustainability, MDPI, vol. 8(3), pages 1-12, March.
    24. Leticia dos Santos Benso Maciel & Benedito Donizeti Bonatto & Hector Arango & Lucas Gustavo Arango, 2020. "Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model," Energies, MDPI, vol. 13(18), pages 1-20, September.
    25. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinicius Braga Ferreira da Costa & Gabriel Nasser Doyle de Doile & Gustavo Troiano & Bruno Henriques Dias & Benedito Donizeti Bonatto & Tiago Soares & Walmir de Freitas Filho, 2022. "Electricity Markets in the Context of Distributed Energy Resources and Demand Response Programs: Main Developments and Challenges Based on a Systematic Literature Review," Energies, MDPI, vol. 15(20), pages 1-43, October.
    2. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    3. Sermarini, Anna Carolina de Paula & Azevedo, João Henrique Paulino & Albuquerque, Vanessa Cardoso de & Calili, Rodrigo Flora & Gonçalves, Felipe & Jannuzzi, Gilberto, 2024. "Distributed energy resources in low-income communities: A public policy proposal for Brazil," Energy Policy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    2. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    3. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    4. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    5. Costa, Vinicius B.F. & Capaz, Rafael S. & Bonatto, Benedito D., 2023. "Small steps towards energy poverty mitigation: Life cycle assessment and economic feasibility analysis of a photovoltaic and battery system in a Brazilian indigenous community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Gabriel Constantino de Lima & Andre Luiz Lopes Toledo & Leonidas Bourikas, 2021. "The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    8. Pinto, Mauricio Almeida & Frate, Cláudio Albuquerque & Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando, 2020. "Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant," Utilities Policy, Elsevier, vol. 63(C).
    9. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    10. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    11. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    12. Pramod Rajput & Maria Malvoni & Nallapaneni Manoj Kumar & O. S. Sastry & Arunkumar Jayakumar, 2020. "Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    13. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    14. Sica, Daniela & Malandrino, Ornella & Supino, Stefania & Testa, Mario & Lucchetti, Maria Claudia, 2018. "Management of end-of-life photovoltaic panels as a step towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2934-2945.
    15. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    16. Muath Bani Salim & Dervis Emre Demirocak & Nael Barakat, 2018. "A Fuzzy Based Model for Standardized Sustainability Assessment of Photovoltaic Cells," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    17. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    18. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    19. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    20. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522003986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.