IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6478-d906945.html
   My bibliography  Save this article

Comprehensive Comparison of Hybrid Cooling of Thermal Power Generation with Airside Serial and Parallel Heat Exchange

Author

Listed:
  • Qian Huang

    (China Nuclear Power Engineering Co., Ltd., Beijing 100840, China)

  • Yifan Zhi

    (China Nuclear Power Engineering Co., Ltd., Beijing 100840, China)

  • Rongyong Zhang

    (China Nuclear Power Engineering Co., Ltd., Beijing 100840, China)

  • Huimin Wei

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Lei Xu

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, North China Electric Power University, Ministry of Education, Beijing 102206, China)

Abstract

Natural draft hybrid cooling (NDHC) for thermal power generating units is proposed to achieve a balance of energy and water consumption for arid areas. This study examines the two main design forms of hybrid cooling with airside in serial and parallel heat exchange based on the same tower shell and heat transfer areas. Taking full consideration of the thermal cycle of the power generating unit, simplified simulation models for different cooling systems are established to show the influences of ambient conditions and marketing factors. Results show that both the hybrid cooling designs have a better cooling efficiency than either dry cooling or wet cooling. Expanded inlet areas of hybrid cooling in the parallel heat exchange design bring high heat transfer performance. As for the serial design, the higher temperature of the air at the outlet of the dry section maintains a larger airside mass flow rate, obtaining a high-efficient cooling system. The hybrid cooling in the serial design type relies more on the heat transfer performance of the wet section and is more sensible to ambient humidity, while the performance of hybrid cooling in the parallel design mainly depends on the dry section and is more easily affected by ambient temperature. Considering the unit cost variations of coal and water treatment, hybrid cooling in the parallel design has a wider range of applications compared with the serial design. With the growth in coal cost, there exist more benefits with the serial design.

Suggested Citation

  • Qian Huang & Yifan Zhi & Rongyong Zhang & Huimin Wei & Lei Xu, 2022. "Comprehensive Comparison of Hybrid Cooling of Thermal Power Generation with Airside Serial and Parallel Heat Exchange," Energies, MDPI, vol. 15(17), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6478-:d:906945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    2. Wei, Huimin & Huang, Xianwei & Chen, Lin & Yang, Lijun & Du, Xiaoze, 2020. "Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants," Applied Energy, Elsevier, vol. 262(C).
    3. Wei, Huimin & Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Entransy analysis optimization of cooling water flow distribution in a dry cooling tower of power plant under summer crosswinds," Energy, Elsevier, vol. 166(C), pages 1229-1240.
    4. Sun, Yubiao & Duniam, Sam & Guan, Zhiqiang & Gurgenci, Hal & Dong, Peixin & Wang, Jianyong & Hooman, Kamel, 2019. "Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    2. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Wei, Huimin & Huang, Xianwei & Chen, Lin & Yang, Lijun & Du, Xiaoze, 2020. "Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants," Applied Energy, Elsevier, vol. 262(C).
    4. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    5. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    6. Huimin Wei & Lin Chen & Zhihua Ge & Lijun Yang & Xiaoze Du, 2021. "Influence of Operation Schemes on the Performance of the Natural Draft Hybrid Cooling System for Thermal Power Generation," Energies, MDPI, vol. 14(18), pages 1-22, September.
    7. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    8. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    9. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    10. Palenzuela, Patricia & Roca, Lidia & Asfand, Faisal & Patchigolla, Kumar, 2022. "Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants," Energy, Elsevier, vol. 242(C).
    11. Ma, Yuan & Xie, Gongnan & Hooman, Kamel, 2022. "Review of printed circuit heat exchangers and its applications in solar thermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    13. Zhao Li & Huimin Wei & Tao Wu & Xiaoze Du, 2021. "Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm," Energies, MDPI, vol. 14(4), pages 1-17, February.
    14. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    15. Liu, Zhan & Liu, Xu & Yang, Shanju & Hooman, Kamel & Yang, Xiaohu, 2021. "Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage," Applied Energy, Elsevier, vol. 303(C).
    16. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
    17. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Aqeel Ahmad Taimoor & Usman Saeed & Sami-ullah Rather & Saad Al-Shahrani & Hisham S. Bamufleh & Hesham Alhumade & Aliyu Adebayo Sulaimon & Walid M. Alalayah & Azmi Mohd Shariff, 2022. "Economic and Technical Analysis of a Hybrid Dry Cooling Cycle to Replace Conventional Wet Cooling Towers for High Process Cooling Loads," Energies, MDPI, vol. 15(21), pages 1-17, October.
    19. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
    20. Wenjie Zhang & Yushan Li & Peiqi Liu & Huimin Wei, 2024. "Improved Design and Economic Estimation of Cold-End Systems for Inland Nuclear Power Plants," Energies, MDPI, vol. 17(10), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6478-:d:906945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.