Effects of SiO 2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
- Mohan, Gowtham & Venkataraman, Mahesh B. & Coventry, Joe, 2019. "Sensible energy storage options for concentrating solar power plants operating above 600 °C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 319-337.
- Arthur, Owen & Karim, M.A., 2016. "An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 739-755.
- Li, Zhao & Li, Baorang & Du, Xiaoze & Wu, Hongwei, 2020. "Experimental investigation on stability of thermal performances of solar salt based nanocomposite," Renewable Energy, Elsevier, vol. 146(C), pages 816-827.
- Zhang, Qiang & Wang, Zhiming & Du, Xiaoze & Yu, Gang & Wu, Hongwei, 2019. "Dynamic simulation of steam generation system in solar tower power plant," Renewable Energy, Elsevier, vol. 135(C), pages 866-876.
- González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
- Wei, Xiaolan & Yin, Yue & Qin, Bo & Wang, Weilong & Ding, Jing & Lu, Jianfeng, 2020. "Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity," Renewable Energy, Elsevier, vol. 145(C), pages 2435-2444.
- Yuan, Fan & Li, Ming-Jia & Qiu, Yu & Ma, Zhao & Li, Meng-Jie, 2019. "Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes," Applied Energy, Elsevier, vol. 250(C), pages 1481-1490.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
- Cristina Prieto & Sonia Fereres & Luisa F. Cabeza, 2020. "The Role of Innovation in Industry Product Deployment: Developing Thermal Energy Storage for Concentrated Solar Power," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- José Pereira & Ana Moita & António Moreira, 2023. "An Overview of the Molten Salt Nanofluids as Thermal Energy Storage Media," Energies, MDPI, vol. 16(4), pages 1-51, February.
- Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
- He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
- Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Han, Yan & Zhang, Cancan & Wu, Yuting & Lu, Yuanwei, 2021. "Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition," Renewable Energy, Elsevier, vol. 175(C), pages 1041-1051.
- He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
- Zhengyue Zhu & Ruihao Bian & Yajun Deng & Bo Yu & Dongliang Sun, 2023. "Multi-Objective Optimization of Graded Thermal Storage System for Direct Steam Generation with Dish Concentrators," Energies, MDPI, vol. 16(5), pages 1-21, March.
- Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
- Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
- Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
- Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
- de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
- Zuo, Yuhang & Li, Yawei & Zhou, Hao, 2022. "Numerical study on preheating process of molten salt tower receiver in windy conditions," Energy, Elsevier, vol. 251(C).
More about this item
Keywords
molten salt; nanoparticle; specific heat capacity; mechanisms; energy; force;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:703-:d:489732. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.