IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p651-d488704.html
   My bibliography  Save this article

Modeling and Mitigation Control of the Submodule-Capacitor Voltage Ripple of a Modular Multilevel Converter under Unbalanced Grid Conditions

Author

Listed:
  • Songda Wang

    (Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark)

  • Danyang Bao

    (Shenzhen Polytechnic, Xili University Town, Shenzhen 518055, China)

  • Gustavo Gontijo

    (Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark)

  • Sanjay Chaudhary

    (Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark)

  • Remus Teodorescu

    (Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark)

Abstract

A modular multilevel converter’s (MMC’s) submodule (SM)-capacitor voltage will increase under unbalanced grid conditions. Depending on the imbalance level, the voltage ripple can be considerably high, and it can exceed the pre-defined safe limits. If this occurs, the converter will trip, which can lead to serious stability problems for the grid. This paper first proposes an analytical solution for deriving the three-phase imbalanced SM ripple of an MMC under an unbalanced grid. With this analytical tool, the imbalance mechanism of the SM voltage ripple can be easily understood. What is more, the symmetrical component method is first applied to analyze the three-phase SM capacitor ripple, and the positive-/negative-/zero-sequence components of the three-phase SM voltage ripple are easily identified by the proposed analytical method. Then, based on this powerful analytical tool, the proper circulating-current profile to be injected can be obtained, allowing for the right compensation of the voltage ripple. Based on this approach, two new voltage ripple compensation methods are proposed in this paper. Simulations were carried out to validate the analytical description of the submodule-capacitor voltage ripple proposed in this paper. Moreover, simulation and experimental results are provided to validate the new compensation techniques introduced in this paper.

Suggested Citation

  • Songda Wang & Danyang Bao & Gustavo Gontijo & Sanjay Chaudhary & Remus Teodorescu, 2021. "Modeling and Mitigation Control of the Submodule-Capacitor Voltage Ripple of a Modular Multilevel Converter under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:651-:d:488704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustavo Gontijo & Songda Wang & Tamas Kerekes & Remus Teodorescu, 2020. "New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications: Modular Multilevel Series Converter," Energies, MDPI, vol. 13(14), pages 1-48, July.
    2. Shuren Wang & Fahad Saeed Alsokhiry & Grain Philip Adam, 2020. "Impact of Submodule Faults on the Performance of Modular Multilevel Converters," Energies, MDPI, vol. 13(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahangeer Badar Soomro & Faheem Akhtar Chachar & Madad Ali Shah & Abdul Aziz Memon & Faisal Alsaif & Sager Alsulamy, 2023. "Optimized Circulating Current Control and Enhanced AC Fault Ride-through Capability Using Model Predictive Control for MMC-HVDC Applications," Energies, MDPI, vol. 16(13), pages 1-19, July.
    2. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    3. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    4. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    5. Bane Popadic & Boris Dumnic & Dragan Milicevic & Luka Strezoski & Natasa Petrovic, 2021. "Sub-Transient Response of the DSC Controlled Inverter under Fault," Energies, MDPI, vol. 14(16), pages 1-18, August.
    6. Jahangeer Badar Soomro & Dileep Kumar & Faheem Akhtar Chachar & Semih Isik & Mohammed Alharbi, 2023. "An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    7. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Brando & Efstratios Chatzinikolaou & Dan Rogers & Ivan Spina, 2021. "Electrochemical Cell Loss Minimization in Modular Multilevel Converters Based on Half-Bridge Modules," Energies, MDPI, vol. 14(5), pages 1-14, March.
    2. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Jaume Girona-Badia & Oriol Gomis-Bellmunt & Tomàs Lledó-Ponsati & Macià Capó-Lliteras & Carlos Collados-Rodriguez & Nicolaos Antonio Cutululis & Oscar Saborío-Romano & Daniel Montesinos-Miracle & Marc, 2022. "Design, Control and Testing of a Modular Multilevel Converter with a Single Cell per Arm in Grid-Forming and Grid-Following Operations for Scaled-Down Experimental Platforms," Energies, MDPI, vol. 15(5), pages 1-16, March.
    4. Massimiliano Luna, 2022. "High-Efficiency and High-Performance Power Electronics for Power Grids and Electrical Drives," Energies, MDPI, vol. 15(16), pages 1-6, August.
    5. Gustavo Gontijo & Songda Wang & Tamas Kerekes & Remus Teodorescu, 2021. "Performance Analysis of Modular Multilevel Converter and Modular Multilevel Series Converter under Variable-Frequency Operation Regarding Submodule-Capacitor Voltage Ripple," Energies, MDPI, vol. 14(3), pages 1-17, February.
    6. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    7. Antonio E. Ginart, 2022. "Modular Transformerless Static Synchronous Series Compensator with Self-Balancing for Ultra High Current Using a Paralleling Scheme," Energies, MDPI, vol. 15(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:651-:d:488704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.