IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4089-d395653.html
   My bibliography  Save this article

Impact of Submodule Faults on the Performance of Modular Multilevel Converters

Author

Listed:
  • Shuren Wang

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1RD, UK)

  • Fahad Saeed Alsokhiry

    (Renewable Energy Research Group and Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Grain Philip Adam

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1RD, UK)

Abstract

Modular multilevel converter (MMC) is well suited for high-power and medium-voltage applications. However, its performance is adversely affected by asymmetry that might be introduced by the failure of a limited number of submodules (SMs) or even by severe deviations in the values of SM capacitors and arm inductors, particularly when the number of SMs per arm is relatively low. Although a safe-failed operation is easily achieved through the incorporation of redundant SMs, the SMs’ faults make MMC arms present unequal impedances, which leads to undesirable internal dynamics because of unequal power distribution between the arms. The severity of these undesirable dynamics varies with the implementation of auxiliary controllers that regulate the MMC internal dynamics. This paper studied the impact of SMs failure on the MMC internal dynamics performance, considering two implementations of internal dynamics control, including a direct control method for suppressing the fundamental component that may arise in the dc-link current. Performances of the presented and widely-appreciated conventional methods for regulating MMC internal dynamics were assessed under normal and SM fault conditions, using detailed time-domain simulations and considering both active and reactive power applications. The effectiveness of control methods is also verified by the experiment. Related trade-offs of the control methods are presented, whereas it is found that the adverse impact of SMs failure on MMC ac and dc side performances could be minimized with appropriate control countermeasures.

Suggested Citation

  • Shuren Wang & Fahad Saeed Alsokhiry & Grain Philip Adam, 2020. "Impact of Submodule Faults on the Performance of Modular Multilevel Converters," Energies, MDPI, vol. 13(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4089-:d:395653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4089/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Brando & Efstratios Chatzinikolaou & Dan Rogers & Ivan Spina, 2021. "Electrochemical Cell Loss Minimization in Modular Multilevel Converters Based on Half-Bridge Modules," Energies, MDPI, vol. 14(5), pages 1-14, March.
    2. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Jaume Girona-Badia & Oriol Gomis-Bellmunt & Tomàs Lledó-Ponsati & Macià Capó-Lliteras & Carlos Collados-Rodriguez & Nicolaos Antonio Cutululis & Oscar Saborío-Romano & Daniel Montesinos-Miracle & Marc, 2022. "Design, Control and Testing of a Modular Multilevel Converter with a Single Cell per Arm in Grid-Forming and Grid-Following Operations for Scaled-Down Experimental Platforms," Energies, MDPI, vol. 15(5), pages 1-16, March.
    4. Massimiliano Luna, 2022. "High-Efficiency and High-Performance Power Electronics for Power Grids and Electrical Drives," Energies, MDPI, vol. 15(16), pages 1-6, August.
    5. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    6. Songda Wang & Danyang Bao & Gustavo Gontijo & Sanjay Chaudhary & Remus Teodorescu, 2021. "Modeling and Mitigation Control of the Submodule-Capacitor Voltage Ripple of a Modular Multilevel Converter under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4089-:d:395653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.