IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p635-d487722.html
   My bibliography  Save this article

Impact of the COVID-19 Lockdown on the Electricity System of Great Britain: A Study on Energy Demand, Generation, Pricing and Grid Stability

Author

Listed:
  • Desen Kirli

    (Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, UK)

  • Maximilian Parzen

    (Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, UK)

  • Aristides Kiprakis

    (Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, UK)

Abstract

The outbreak of SARS-COV-2 disease 2019 (COVID-19) abruptly changed the patterns in electricity consumption, challenging the system operations of forecasting and balancing supply and demand. This is mainly due to the mitigation measures that include lockdown and work from home (WFH), which decreased the aggregated demand and remarkably altered its profile. Here, we characterise these changes with various quantitative markers and compare it with pre-lockdown business-as-usual data using Great Britain (GB) as a case study. The ripple effects on the generation portfolio, system frequency, forecasting accuracy and imbalance pricing are also analysed. An energy data extraction and pre-processing pipeline that can be used in a variety of similar studies is also presented. Analysis of the GB demand data during the March 2020 lockdown indicates that a shift to WFH will result in a net benefit for flexible stakeholders, such as consumers on variable tariffs. Furthermore, the analysis illustrates a need for faster and more frequent balancing actions, as a result of the increased share of renewable energy in the generation mix. This new equilibrium of energy demand and supply will require a redesign of the existing balancing mechanisms as well as the longer-term power system planning strategies.

Suggested Citation

  • Desen Kirli & Maximilian Parzen & Aristides Kiprakis, 2021. "Impact of the COVID-19 Lockdown on the Electricity System of Great Britain: A Study on Energy Demand, Generation, Pricing and Grid Stability," Energies, MDPI, vol. 14(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:635-:d:487722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    2. Stephen Snow & Richard Bean & Mashhuda Glencross & Neil Horrocks, 2020. "Drivers behind Residential Electricity Demand Fluctuations Due to COVID-19 Restrictions," Energies, MDPI, vol. 13(21), pages 1-20, November.
    3. Jun Maekawa & Bui Hien Hai & Sarana Shinkuma & Koji Shimada, 2018. "The Effect of Renewable Energy Generation on the Electric Power Spot Price of the Japan Electric Power Exchange," Energies, MDPI, vol. 11(9), pages 1-16, August.
    4. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    5. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1352-1362, August.
    6. Campillo, Javier & Dahlquist, Erik & Wallin, Fredrik & Vassileva, Iana, 2016. "Is real-time electricity pricing suitable for residential users without demand-side management?," Energy, Elsevier, vol. 109(C), pages 310-325.
    7. Hansen, Anca D. & Altin, Müfit & Margaris, Ioannis D. & Iov, Florin & Tarnowski, Germán C., 2014. "Analysis of the short-term overproduction capability of variable speed wind turbines," Renewable Energy, Elsevier, vol. 68(C), pages 326-336.
    8. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 524-524, March.
    9. Emilio Ghiani & Marco Galici & Mario Mureddu & Fabrizio Pilo, 2020. "Impact on Electricity Consumption and Market Pricing of Energy and Ancillary Services during Pandemic of COVID-19 in Italy," Energies, MDPI, vol. 13(13), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debnath, Kumar Biswajit & Jenkins, David P. & Patidar, Sandhya & Peacock, Andrew D., 2024. "Remote work might unlock solar PV's potential of cracking the ‘Duck Curve’," Applied Energy, Elsevier, vol. 367(C).
    2. Zhiang Zhang & Ali Cheshmehzangi & Saeid Pourroostaei Ardakani, 2021. "A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China," Energies, MDPI, vol. 14(23), pages 1-22, December.
    3. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    4. Luis M. Abadie, 2021. "Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain," Energies, MDPI, vol. 14(6), pages 1-17, March.
    5. Francis Mujjuni & Joyce Nyuma Chivunga & Thomas Betts & Zhengyu Lin & Richard Blanchard, 2022. "A Comparative Analysis of the Impacts and Resilience of the Electricity Supply Industry against COVID-19 Restrictions in the United Kingdom, Malawi, and Uganda," Sustainability, MDPI, vol. 14(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
    2. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    3. Martina Pilloni & József Kádár & Tareq Abu Hamed, 2022. "The Impact of COVID-19 on Energy Start-Up Companies: The Use of Global Financial Crisis (GFC) as a Lesson for Future Recovery," Energies, MDPI, vol. 15(10), pages 1-15, May.
    4. Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
    5. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    6. Kayode Ayankoya & Andre P. Calitz & Jean H. Greyling, 2016. "Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach," Agrekon, Taylor & Francis Journals, vol. 55(4), pages 483-508, October.
    7. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    8. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    9. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    10. Marijana Zekić-Sušac & Marinela Knežević & Rudolf Scitovski, 2021. "Modeling the cost of energy in public sector buildings by linear regression and deep learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 307-322, March.
    11. Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
    12. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    13. Man Sing Wong & Tingneng Wang & Hung Chak Ho & Coco Y. T. Kwok & Keru Lu & Sawaid Abbas, 2018. "Towards a Smart City: Development and Application of an Improved Integrated Environmental Monitoring System," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    14. Zekić-Sušac Marijana & Scitovski Rudolf & Has Adela, 2018. "Cluster analysis and artificial neural networks in predicting energy efficiency of public buildings as a cost-saving approach," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 4(2), pages 57-66, November.
    15. Ayankoya, Kayode & Calitz, Andre P. & Greyling, Jean H., 2016. "Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 55(4), December.
    16. Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    17. Shivaram Subramanian & Pavithra Harsha, 2021. "Demand Modeling in the Presence of Unobserved Lost Sales," Management Science, INFORMS, vol. 67(6), pages 3803-3833, June.
    18. Agnese Maria Di Brisco & Enea Giuseppe Bongiorno & Aldo Goia & Sonia Migliorati, 2023. "Bayesian flexible beta regression model with functional covariate," Computational Statistics, Springer, vol. 38(2), pages 623-645, June.
    19. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    20. Guo, Lin & Zhang, Ben, 2019. "Mining structural influence to analyze relationships in social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 301-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:635-:d:487722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.