IDEAS home Printed from https://ideas.repec.org/a/ags/agreko/347529.html
   My bibliography  Save this article

Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach

Author

Listed:
  • Ayankoya, Kayode
  • Calitz, Andre P.
  • Greyling, Jean H.

Abstract

The prices of agricultural grain commodities are known to be volatile due to several factors that influence these prices. Moreover, different combinations of these factors, such as demand, supply and macroeconomic indicators are responsible for the price volatility at different times. Big Data presents opportunities to collect and integrate datasets from several sources for the purpose of discovering useful patterns and extracting actionable insights that can be used to gain competitive advantage or improve decision making. Neural Networks presents research opportunities for training computer algorithms to model linear and non-linear patterns that might exist in datasets for the purpose of extracting actionable insights such as making predictions. This article proposes a Big Data and Neural Networks approach for predicting prices of grain commodities in South Africa. It was identified that disparate data that influence the grain commodities market can be acquired, integrated and analysed in real-time to predict future prices of grain commodities. By utilising SAP HANA as the enabling Big Data technology, data acquired from several sources was used to create an integrated dataset, and a predictive model was developed using Backpropagation Neural Network algorithms. This model was used to predict the daily spot prices of white maize on the Johannesburg Stock Exchange (JSE) at the end of each trading day. The initial results indicate that the approach can be scientifically used to predict future prices of grain commodities in a real-time environment.

Suggested Citation

  • Ayankoya, Kayode & Calitz, Andre P. & Greyling, Jean H., 2016. "Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 55(4), December.
  • Handle: RePEc:ags:agreko:347529
    DOI: 10.22004/ag.econ.347529
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/347529/files/Real-Time%20Grain%20Commodities%20Price%20Predictions%20in%20South%20Africa%20%20A%20Big%20Data%20and%20Neural%20Networks%20Approach.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.347529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:agreko:347529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeasaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.