IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p288-d476157.html
   My bibliography  Save this article

A Novel Algorithm for Fast DC Electric Arc Detection

Author

Listed:
  • Michał Dołęgowski

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland)

  • Mirosław Szmajda

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland)

Abstract

Electric arcing is a common problem in DC power systems. To overcome this problem, the electric arc detection algorithm has been developed as a faster alternative to existing algorithms. The following issues are addressed in this paper: The calculation of the proposed algorithm of incremental decomposition of the signal over time; the computational complexity of Fast Fourier Transform (FFT) and the incremental decomposition; the test bench used to measure electric arcs at given parameters; the analysis of measurements using FFT; and the analysis of measurements using incremental decomposition. The parameters are the DC voltage, electric load, and width of the gap between electrodes. The results showed that the proposed algorithm allows for a faster calculation—about seven times faster than FFT—and cheaper implementation in electric arc detection devices than FFT.

Suggested Citation

  • Michał Dołęgowski & Mirosław Szmajda, 2021. "A Novel Algorithm for Fast DC Electric Arc Detection," Energies, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:288-:d:476157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukasz Nagi & Michał Kozioł & Jarosław Zygarlicki, 2020. "Comparative Analysis of Optical Radiation Emitted by Electric Arc Generated at AC and DC Voltage," Energies, MDPI, vol. 13(19), pages 1-10, October.
    2. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    3. Łukasz Nagi & Michał Kozioł & Jarosław Zygarlicki, 2020. "Optical Radiation from an Electric Arc at Different Frequencies," Energies, MDPI, vol. 13(7), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Gao & Gan Zhou & Jian Zhang & Ying Zeng & Yanjun Feng & Yuyuan Liu, 2023. "Fault Arc Detection Based on Channel Attention Mechanism and Lightweight Residual Network," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "A Novel Method for Detection and Location of Series Arc Fault for Non-Intrusive Load Monitoring," Energies, MDPI, vol. 16(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Nagi & Michał Kozioł & Jarosław Zygarlicki, 2020. "Comparative Analysis of Optical Radiation Emitted by Electric Arc Generated at AC and DC Voltage," Energies, MDPI, vol. 13(19), pages 1-10, October.
    2. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    3. Andrea Mariscotti & Leonardo Sandrolini, 2021. "Detection of Harmonic Overvoltage and Resonance in AC Railways Using Measured Pantograph Electrical Quantities," Energies, MDPI, vol. 14(18), pages 1-22, September.
    4. Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.
    5. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.
    6. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    7. Zbigniew Olczykowski & Jacek Kozyra, 2022. "Propagation of Disturbances Generated by DC Electric Traction," Energies, MDPI, vol. 15(18), pages 1-22, September.
    8. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    9. Julio Barros, 2022. "New Power Quality Measurement Techniques and Indices in DC and AC Networks," Energies, MDPI, vol. 15(23), pages 1-3, December.
    10. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    11. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    12. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:288-:d:476157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.