IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8461-d702785.html
   My bibliography  Save this article

Impact of Hydrogen Injection on Natural Gas Measurement

Author

Listed:
  • Marco Dell’Isola

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy)

  • Giorgio Ficco

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy)

  • Linda Moretti

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy)

  • Jacek Jaworski

    (Oil and Gas Institute—National Research Institute, ul. Lubicz 25a, 31-503 Kraków, Poland)

  • Paweł Kułaga

    (Oil and Gas Institute—National Research Institute, ul. Lubicz 25a, 31-503 Kraków, Poland)

  • Ewa Kukulska–Zając

    (Oil and Gas Institute—National Research Institute, ul. Lubicz 25a, 31-503 Kraków, Poland)

Abstract

Hydrogen is increasingly receiving a primary role as an energy vector in ensuring the achievement of the European decarbonization goals by 2050. In fact, Hydrogen could be produced also by electrolysis of water using renewable sources, such as photovoltaic and wind power, being able to perform the energy storage function, as well as through injection into natural gas infrastructures. However, hydrogen injection directly impacts thermodynamic properties of the gas itself, such as density, calorific value, Wobbe index, sound speed, etc. Consequently, this practice leads to changes in metrological behavior, especially in terms of volume and gas quality measurements. In this paper, the authors present an overview on the impact of hydrogen injection in natural gas measurements. In particular, the changes in thermodynamic properties of the gas mixtures with different H 2 contents have been evaluated and the effects on the accuracy of volume conversion at standard conditions have been investigated both on the theoretical point of view and experimentally. To this end, the authors present and discuss the effect of H 2 injection in gas networks on static ultrasonic domestic gas meters, both from a theoretical and an experimental point of view. Experimental tests demonstrated that ultrasonic gas meters are not significantly affected by H 2 injection up to about 10%.

Suggested Citation

  • Marco Dell’Isola & Giorgio Ficco & Linda Moretti & Jacek Jaworski & Paweł Kułaga & Ewa Kukulska–Zając, 2021. "Impact of Hydrogen Injection on Natural Gas Measurement," Energies, MDPI, vol. 14(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8461-:d:702785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacek Jaworski & Adrian Dudek, 2020. "Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters," Energies, MDPI, vol. 13(20), pages 1-23, October.
    2. Jacek Jaworski & Paweł Kułaga & Tomasz Blacharski, 2020. "Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters," Energies, MDPI, vol. 13(11), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Ficco & Fausto Arpino & Marco Dell’Isola & Michele Grimaldi & Silvia Lisi, 2022. "Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy," Energies, MDPI, vol. 15(21), pages 1-10, October.
    2. Alexandros Kafetzis & Michael Bampaou & Giorgos Kardaras & Kyriakos Panopoulos, 2023. "Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case," Energies, MDPI, vol. 16(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Jaworski & Paweł Kułaga & Giorgio Ficco & Marco Dell’Isola, 2021. "Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures," Energies, MDPI, vol. 14(22), pages 1-14, November.
    2. Anna Huszal & Jacek Jaworski, 2020. "Studies of the Impact of Hydrogen on the Stability of Gaseous Mixtures of THT," Energies, MDPI, vol. 13(23), pages 1-19, December.
    3. Giorgio Ficco & Fausto Arpino & Marco Dell’Isola & Michele Grimaldi & Silvia Lisi, 2022. "Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy," Energies, MDPI, vol. 15(21), pages 1-10, October.
    4. Robert Wojtowicz & Jacek Jaworski, 2021. "Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    5. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    6. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    7. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    8. Jacek Jaworski & Adrian Dudek, 2020. "Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters," Energies, MDPI, vol. 13(20), pages 1-23, October.
    9. Byoungjik Park & Yangkyun Kim & Kwanwoo Lee & Shinwon Paik & Chankyu Kang, 2021. "Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-13, July.
    10. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    11. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Iren A. Makaryan & Igor V. Sedov & Eugene A. Salgansky & Artem V. Arutyunov & Vladimir S. Arutyunov, 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities," Energies, MDPI, vol. 15(6), pages 1-27, March.
    13. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    14. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    15. Yang, Zhaoming & Liu, Zhe & Zhou, Jing & Song, Chaofan & Xiang, Qi & He, Qian & Hu, Jingjing & Faber, Michael H. & Zio, Enrico & Li, Zhenlin & Su, Huai & Zhang, Jinjun, 2023. "A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8461-:d:702785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.