IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8418-d701723.html
   My bibliography  Save this article

Innovative Energy-Saving Propulsion System for Low-Speed Biomimetic Underwater Vehicles

Author

Listed:
  • Paweł Piskur

    (Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Piotr Szymak

    (Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Michał Przybylski

    (Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Krzysztof Naus

    (Department of Navigation, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Krzysztof Jaskólski

    (Department of Navigation, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Mariusz Żokowski

    (Air Force Institute of Technology, Ks. Boleslawa 6, 01-494 Warsaw, Poland)

Abstract

This article covers research on an innovative propulsion system design for a Biomimetic Unmanned Underwater Vehicle (BUUV) operating at low speeds. The experiment was conducted on a laboratory test water tunnel equipped with specialised sensor equipment to assess the Fluid-Structure Interaction (FSI) and energy consumption of two different types of propulsion systems. The experimental data contrast the undulating with the drag-based propulsion system. The additional joint in the drag-based propulsion system is intended to increase thrust and decrease energy input. The tests were conducted at a variety of fins oscillation frequencies and fluid velocities. The experiments demonstrate that, in the region of low-speed forward movement, the efficiency of the propulsion system with the additional joint is greater.

Suggested Citation

  • Paweł Piskur & Piotr Szymak & Michał Przybylski & Krzysztof Naus & Krzysztof Jaskólski & Mariusz Żokowski, 2021. "Innovative Energy-Saving Propulsion System for Low-Speed Biomimetic Underwater Vehicles," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8418-:d:701723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Snons Cheong & Young-Jun Kim & Jong-Hwa Chun & Jung-Ki Kim & Shin Huh, 2021. "Integrated Offshore Seismic Survey Using an Unmanned Wave Glider," Energies, MDPI, vol. 14(2), pages 1-12, January.
    2. Michele De Santis & Sandro Agnelli & Fabrizio Patanè & Oliviero Giannini & Gino Bella, 2018. "Experimental Study for the Assessment of the Measurement Uncertainty Associated with Electric Powertrain Efficiency Using the Back-to-Back Direct Method," Energies, MDPI, vol. 11(12), pages 1-19, December.
    3. Graham K. Taylor & Robert L. Nudds & Adrian L. R. Thomas, 2003. "Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency," Nature, Nature, vol. 425(6959), pages 707-711, October.
    4. Ryan Salazar & Ryan Quintana & Abdessattar Abdelkefi, 2021. "Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters," Energies, MDPI, vol. 14(3), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Hożyń, 2023. "Convolutional Neural Networks for Classifying Electronic Components in Industrial Applications," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Paweł Piskur, 2022. "Side Fins Performance in Biomimetic Unmanned Underwater Vehicle," Energies, MDPI, vol. 15(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Rui & Zhang, Xiaoke & Chen, Minmin & Lian, Yuxi & Yu, Daoping, 2023. "Vorticity preference of the Yangtze finless porpoise (Neophocaena asiaeorientalis) during the dry season at the Wanhe River Estuary confluence," Ecological Modelling, Elsevier, vol. 485(C).
    2. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    3. Burin Yodwong & Phatiphat Thounthong & Damien Guilbert & Nicu Bizon, 2020. "Differential Flatness-Based Cascade Energy/Current Control of Battery/Supercapacitor Hybrid Source for Modern e–Vehicle Applications," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    4. Li, Weizhong & Wang, Wen-Quan & Yan, Yan, 2020. "The effects of outline of the symmetrical flapping hydrofoil on energy harvesting performance," Renewable Energy, Elsevier, vol. 162(C), pages 624-638.
    5. Wenich Vattanapuripakorn & Sathapon Sonsupap & Khomson Khannam & Natthakrit Bamrungwong & Prachakon Kaewkhiaw & Jiradanai Sarasamkan & Bopit Bubphachot, 2022. "Advanced Electric Battery Power Storage for Motors through the Use of Differential Gears and High Torque for Recirculating Power Generation," Clean Technol., MDPI, vol. 4(4), pages 1-14, October.
    6. Cristiano Maria Verrelli & Cristian Romagnoli & Roxanne Jackson & Ivo Ferretti & Giuseppe Annino & Vincenzo Bonaiuto, 2021. "Phi -Bonacci Butterfly Stroke Numbers to Assess Self-Similarity in Elite Swimmers," Mathematics, MDPI, vol. 9(13), pages 1-12, July.
    7. Kunyu Wang & Rong Yang & Yongjian Zhou & Wei Huang & Song Zhang, 2022. "Design and Improvement of SD3-Based Energy Management Strategy for a Hybrid Electric Urban Bus," Energies, MDPI, vol. 15(16), pages 1-21, August.
    8. Chen, Kuan-Yu & Chiang, Chen-Yu & Lai, Yu-Hsiang, 2024. "Optimal propulsion efficiency for NACA0012 foils with asymmetries in motion: A hybrid approach using the Taguchi method and artificial neural networks," Energy, Elsevier, vol. 304(C).
    9. Brendan Hoover & Richard S. Middleton & Sean Yaw, 2019. "CostMAP: An open-source software package for developing cost surfaces," Papers 1906.08872, arXiv.org.
    10. Joel W. Newbolt & Nickolas Lewis & Mathilde Bleu & Jiajie Wu & Christiana Mavroyiakoumou & Sophie Ramananarivo & Leif Ristroph, 2024. "Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Emanuel Camacho & Fernando Neves & André Silva & Jorge Barata, 2020. "Numerical Investigation of Frequency and Amplitude Influence on a Plunging NACA0012," Energies, MDPI, vol. 13(8), pages 1-13, April.
    12. Paweł Piskur, 2022. "Side Fins Performance in Biomimetic Unmanned Underwater Vehicle," Energies, MDPI, vol. 15(16), pages 1-14, August.
    13. Trivellato, F. & Raciti Castelli, M., 2015. "Appraisal of Strouhal number in wind turbine engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 795-804.
    14. Xiaotian Zhang & Noel Naughton & Tejaswin Parthasarathy & Mattia Gazzola, 2021. "Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8418-:d:701723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.