IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8198-d696507.html
   My bibliography  Save this article

Photovoltaic Evaporative Chimney I–V Measurement System

Author

Listed:
  • Pablo Casado

    (Industrial Electronics Group, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • José M. Blanes

    (Industrial Electronics Group, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Francisco Javier Aguilar Valero

    (Department of Mechanical Engineering and Energy, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Cristian Torres

    (Industrial Electronics Group, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Manuel Lucas Miralles

    (Department of Mechanical Engineering and Energy, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Javier Ruiz Ramírez

    (Department of Mechanical Engineering and Energy, Miguel Hernández University of Elche, Avda. de la Universidad, s/n, 03202 Elche, Spain)

Abstract

The photovoltaic evaporative chimney is a novel solar-cooling system that serves a double purpose: it increases the efficiency of the photovoltaic (PV) panels and it cools down a water stream which can be used to dissipate the heat from a refrigeration cycle. One of the major issues arising from the operation of the chimney is the temperature stratification in the panel due to the movement of the air in the chimney. This effect can trigger the activation of the bypass diodes of the module, creating local maximum power points (MPP) that can compromise the grid-tied inverter tracking. To fill this gap, this paper deals with the design and implementation of an I–V curve measurement system to be used in the performance analysis of the system. The I–V curve tracer consists of a capacitive load controlled by a single board computer. The final design includes protections, capacitor charging/discharging power electronics, remote commands inputs, and current, voltage, irradiance, and temperature sensors.The results show that the modules bypass diodes are not activated during the tests, and no local MPPs appear. Moreover, the curves measured show the benefits of the photovoltaic chimney: the cooling effect increases the power generated by the PV panels by around 10%.

Suggested Citation

  • Pablo Casado & José M. Blanes & Francisco Javier Aguilar Valero & Cristian Torres & Manuel Lucas Miralles & Javier Ruiz Ramírez, 2021. "Photovoltaic Evaporative Chimney I–V Measurement System," Energies, MDPI, vol. 14(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8198-:d:696507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hartmann, N. & Glueck, C. & Schmidt, F.P., 2011. "Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates," Renewable Energy, Elsevier, vol. 36(5), pages 1329-1338.
    2. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    3. van Dyk, E.E. & Gxasheka, A.R. & Meyer, E.L., 2005. "Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 30(3), pages 399-411.
    4. Kaiser, A.S. & Zamora, B. & Mazón, R. & García, J.R. & Vera, F., 2014. "Experimental study of cooling BIPV modules by forced convection in the air channel," Applied Energy, Elsevier, vol. 135(C), pages 88-97.
    5. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    6. Ghafoor, Abdul & Munir, Anjum, 2015. "Worldwide overview of solar thermal cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 763-774.
    7. Lucas, M. & Aguilar, F.J. & Ruiz, J. & Cutillas, C.G. & Kaiser, A.S. & Vicente, P.G., 2017. "Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling," Renewable Energy, Elsevier, vol. 111(C), pages 26-37.
    8. Ruiz, J. & Martínez, P. & Sadafi, H. & Aguilar, F.J. & Vicente, P.G. & Lucas, M., 2020. "Experimental characterization of a photovoltaic solar-driven cooling system based on an evaporative chimney," Renewable Energy, Elsevier, vol. 161(C), pages 43-54.
    9. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    10. Lucas, M. & Ruiz, J. & Aguilar, F.J. & Cutillas, C.G. & Kaiser, A.S. & Vicente, P.G., 2019. "Experimental study of a modified evaporative photovoltaic chimney including water sliding," Renewable Energy, Elsevier, vol. 134(C), pages 161-168.
    11. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, J. & Martínez, P. & Sadafi, H. & Aguilar, F.J. & Vicente, P.G. & Lucas, M., 2020. "Experimental characterization of a photovoltaic solar-driven cooling system based on an evaporative chimney," Renewable Energy, Elsevier, vol. 161(C), pages 43-54.
    2. Lucas, M. & Ruiz, J. & Aguilar, F.J. & Cutillas, C.G. & Kaiser, A.S. & Vicente, P.G., 2019. "Experimental study of a modified evaporative photovoltaic chimney including water sliding," Renewable Energy, Elsevier, vol. 134(C), pages 161-168.
    3. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    4. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    5. Yang, Li-Hao & Liang, Jyun-De & Hsu, Chien-Yeh & Yang, Tai-Her & Chen, Sih-Li, 2019. "Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger," Renewable Energy, Elsevier, vol. 134(C), pages 970-981.
    6. Omar, M.N. & Taha, A.T. & Samak, A.A. & Keshek, M.H. & Gomaa, E.M. & Elsisi, S.F., 2021. "Simulation and validation model of cooling greenhouse by solar energy (P V) integrated with painting its cover and its effect on the cucumber production," Renewable Energy, Elsevier, vol. 172(C), pages 1154-1173.
    7. Xiao, Yang & Bao, Yanqiong & Yu, Linfeng & Zheng, Xiong & Qin, Guangzhao & Chen, Meijie & He, Maogang, 2023. "Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications," Energy, Elsevier, vol. 273(C).
    8. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    10. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    11. Zeyad A. Haidar & Jamel Orfi & Zakariya Kaneesamkandi, 2020. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches," Energies, MDPI, vol. 14(1), pages 1-20, December.
    12. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    13. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    14. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    15. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    16. Yecid Mu oz & Luz Helena Carvajal & Juan Pablo M ndez & Javier Camilo Ni o & Miguel Angel De la Rosa & Adalberto Ospino, 2021. "Technical and Financial Assessment of Photovoltaic Solar Systems for Residential Complexes Considering Three Different Commercial Technologies and Colombia s Energy Policy," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 272-280.
    17. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    18. Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
    19. Mohammad Hassan Shojaeefard & Noor Barzan Sakran & Mohammad Mazidi Sharfabadi & Omar A. Hussein & Hussein A. Mohammed, 2023. "Experimental and Numerical Investigation of the Effect of Water Cooling on the Temperature Distribution of Photovoltaic Modules Using Copper Pipes," Energies, MDPI, vol. 16(10), pages 1-21, May.
    20. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.

    More about this item

    Keywords

    solar cooling; PV; I–V curves;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8198-:d:696507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.