IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v111y2017icp26-37.html
   My bibliography  Save this article

Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling

Author

Listed:
  • Lucas, M.
  • Aguilar, F.J.
  • Ruiz, J.
  • Cutillas, C.G.
  • Kaiser, A.S.
  • Vicente, P.G.

Abstract

Cooling sector plays a crucial role in the World's transition towards an efficient and decarbonised energy system. Solar cooling is an attractive idea because of the chronological coincidence between available solar radiation and cooling needs. This paper studies the possibility of increasing the efficiency of solar photovoltaic modules by evaporative cooling. This, combined with the use of a water condensed chiller, will enable an efficient cooling system design as a whole. To achieve this goal this paper experimentally evaluates the thermal and electrical performance of a Photovoltaic Evaporative Chimney. A prototype with two photovoltaic modules was built; one of them is used as a reference and the other is modified in its rear side including the evaporative solar chimney. The system is able to dissipate a thermal power of about 1500 W with a thermal efficiency exceeding 30% in summer conditions. The module temperature differences reach 8 K, depending on the wind conditions and ambient air psychrometric properties. Regarding the electrical efficiency, the results showed an average improvement of 4.9% to a maximum of 7.6% around midday in a typical summer day for a Mediterranean climate.

Suggested Citation

  • Lucas, M. & Aguilar, F.J. & Ruiz, J. & Cutillas, C.G. & Kaiser, A.S. & Vicente, P.G., 2017. "Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling," Renewable Energy, Elsevier, vol. 111(C), pages 26-37.
  • Handle: RePEc:eee:renene:v:111:y:2017:i:c:p:26-37
    DOI: 10.1016/j.renene.2017.03.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117302781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    2. Pablo Casado & José M. Blanes & Francisco Javier Aguilar Valero & Cristian Torres & Manuel Lucas Miralles & Javier Ruiz Ramírez, 2021. "Photovoltaic Evaporative Chimney I–V Measurement System," Energies, MDPI, vol. 14(24), pages 1-14, December.
    3. Zeyad A. Haidar & Jamel Orfi & Zakariya Kaneesamkandi, 2020. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches," Energies, MDPI, vol. 14(1), pages 1-20, December.
    4. Altegoer, D. & Hussong, J. & Lindken, R., 2022. "Efficiency increase of photovoltaic systems by means of evaporative cooling in a back-mounted chimney-like channel," Renewable Energy, Elsevier, vol. 191(C), pages 557-570.
    5. Elghamry, Rania & Hassan, Hamdy, 2020. "Impact a combination of geothermal and solar energy systems on building ventilation, heating and output power: Experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 1403-1413.
    6. Ruiz, J. & Martínez, P. & Sadafi, H. & Aguilar, F.J. & Vicente, P.G. & Lucas, M., 2020. "Experimental characterization of a photovoltaic solar-driven cooling system based on an evaporative chimney," Renewable Energy, Elsevier, vol. 161(C), pages 43-54.
    7. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    8. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Yecid Mu oz & Luz Helena Carvajal & Juan Pablo M ndez & Javier Camilo Ni o & Miguel Angel De la Rosa & Adalberto Ospino, 2021. "Technical and Financial Assessment of Photovoltaic Solar Systems for Residential Complexes Considering Three Different Commercial Technologies and Colombia s Energy Policy," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 272-280.
    10. Lucas, M. & Ruiz, J. & Aguilar, F.J. & Cutillas, C.G. & Kaiser, A.S. & Vicente, P.G., 2019. "Experimental study of a modified evaporative photovoltaic chimney including water sliding," Renewable Energy, Elsevier, vol. 134(C), pages 161-168.
    11. Omar, M.N. & Taha, A.T. & Samak, A.A. & Keshek, M.H. & Gomaa, E.M. & Elsisi, S.F., 2021. "Simulation and validation model of cooling greenhouse by solar energy (P V) integrated with painting its cover and its effect on the cucumber production," Renewable Energy, Elsevier, vol. 172(C), pages 1154-1173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:111:y:2017:i:c:p:26-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.