IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7765-d683003.html
   My bibliography  Save this article

Probabilistic Assessment and Uncertainty Analysis of CO 2 Storage Capacity of the Morrow B Sandstone—Farnsworth Field Unit

Author

Listed:
  • Jonathan Asante

    (Department of Petroleum and Natural Gas Engineering, Faculty of Petroleum Engineering, New Mexico Tech Campus, Socorro, NM 87801, USA)

  • William Ampomah

    (Department of Petroleum and Natural Gas Engineering, Faculty of Petroleum Engineering, New Mexico Tech Campus, Socorro, NM 87801, USA)

  • Dylan Rose-Coss

    (New Mexico Oil Conservation Division, Santa Fe, NM 87801, USA)

  • Martha Cather

    (Department of Petroleum and Natural Gas Engineering, Faculty of Petroleum Engineering, New Mexico Tech Campus, Socorro, NM 87801, USA)

  • Robert Balch

    (Department of Petroleum and Natural Gas Engineering, Faculty of Petroleum Engineering, New Mexico Tech Campus, Socorro, NM 87801, USA)

Abstract

This paper presents probabilistic methods to estimate the quantity of carbon dioxide (CO 2 ) that can be stored in a mature oil reservoir and analyzes the uncertainties associated with the estimation. This work uses data from the Farnsworth Field Unit (FWU), Ochiltree County, Texas, which is currently undergoing a tertiary recovery process. The input parameters are determined from seismic, core, and fluid analyses. The results of the estimation of the CO 2 storage capacity of the reservoir are presented with both expectation curve and log probability plot. The expectation curve provides a range of possible outcomes such as the P90, P50, and P10. The deterministic value is calculated as the statistical mean of the storage capacity. The coefficient of variation and the uncertainty index, P10/P90, is used to analyze the overall uncertainty of the estimations. A relative impact plot is developed to analyze the sensitivity of the input parameters towards the total uncertainty and compared with Monte Carlo. In comparison to the Monte Carlo method, the results are practically the same. The probabilistic technique presented in this paper can be applied in different geological settings as well as other engineering applications.

Suggested Citation

  • Jonathan Asante & William Ampomah & Dylan Rose-Coss & Martha Cather & Robert Balch, 2021. "Probabilistic Assessment and Uncertainty Analysis of CO 2 Storage Capacity of the Morrow B Sandstone—Farnsworth Field Unit," Energies, MDPI, vol. 14(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7765-:d:683003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nehil Shreyash & Muskan Sonker & Sushant Bajpai & Saurabh Kr Tiwary & Mohd Ashhar Khan & Subham Raj & Tushar Sharma & Susham Biswas, 2021. "The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization," Energies, MDPI, vol. 14(16), pages 1-34, August.
    2. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    3. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Anthony Morgan & Reid Grigg & William Ampomah, 2021. "A Gate-to-Gate Life Cycle Assessment for the CO 2 -EOR Operations at Farnsworth Unit (FWU)," Energies, MDPI, vol. 14(9), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Appiah Acheampong & William Ampomah & Don Lee & Angus Eastwood-Anaba, 2023. "Coupled Hydromechanical Modeling and Assessment of Induced Seismicity at FWU: Utilizing Time-Lapse VSP and Microseismic Data," Energies, MDPI, vol. 16(10), pages 1-24, May.
    2. Taha Yehia & Ahmed Naguib & Mostafa M. Abdelhafiz & Gehad M. Hegazy & Omar Mahmoud, 2023. "Probabilistic Decline Curve Analysis: State-of-the-Art Review," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pål Østebø Andersen, 2023. "Editor’s Choice: Advances in Carbon Capture Subsurface Storage and Utilization," Energies, MDPI, vol. 16(5), pages 1-4, February.
    2. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    3. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    4. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    5. García-Mariaca, Alexander & Llera-Sastresa, Eva & Moreno, Francisco, 2024. "CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective," Energy, Elsevier, vol. 292(C).
    6. Ravindra Prasad & Sanjay Kumar Gupta & Nisha Shabnam & Carlos Yure B. Oliveira & Arvind Kumar Nema & Faiz Ahmad Ansari & Faizal Bux, 2021. "Role of Microalgae in Global CO 2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective," Sustainability, MDPI, vol. 13(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7765-:d:683003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.