IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7693-d681089.html
   My bibliography  Save this article

Physically Motivated Water Modeling in Control-Oriented Polymer Electrolyte Membrane Fuel Cell Stack Models

Author

Listed:
  • Zhang Peng Du

    (Institute of Mechanics and Mechatronics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria)

  • Andraž Kravos

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia)

  • Christoph Steindl

    (Institute of Powertrains and Automotive Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria)

  • Tomaž Katrašnik

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia)

  • Stefan Jakubek

    (Institute of Mechanics and Mechatronics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria)

  • Christoph Hametner

    (Christian Doppler Laboratory for Innovative Control and Monitoring of Automotive Powertrain Systems, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria)

Abstract

Polymer electrolyte membrane fuel cells (PEMFCs) are prone to membrane dehydration and liquid water flooding, negatively impacting their performance and lifetime. Therefore, PEMFCs require appropriate water management, which makes accurate water modeling indispensable. Unfortunately, available control-oriented models only replicate individual water-related aspects or use oversimplistic approximations. This paper resolves this challenge by proposing, for the first time, a control-oriented PEMFC stack model focusing on physically motivated water modeling, which covers phase change, liquid water removal, membrane water uptake, and water flooding effects on the electrochemical reaction. Parametrizing the resulting model with measurement data yielded the fitted model. The parameterized model delivers valuable insight into the water mechanisms, which were thoroughly analyzed. In summary, the proposed model enables the derivation of advanced control strategies for efficient water management and mitigation of the degradation phenomena of PEMFCs. Additionally, the model provides the required accuracy for control applications while maintaining the necessary computational efficiency.

Suggested Citation

  • Zhang Peng Du & Andraž Kravos & Christoph Steindl & Tomaž Katrašnik & Stefan Jakubek & Christoph Hametner, 2021. "Physically Motivated Water Modeling in Control-Oriented Polymer Electrolyte Membrane Fuel Cell Stack Models," Energies, MDPI, vol. 14(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7693-:d:681089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2020. "Safe and Efficient Polymer Electrolyte Membrane Fuel Cell Control Using Successive Linearization Based Model Predictive Control Validated on Real Vehicle Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
    2. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2021. "Model-Predictive-Control-Based Reference Governor for Fuel Cells in Automotive Application Compared with Performance from a Real Vehicle," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    4. Daniel Ritzberger & Christoph Hametner & Stefan Jakubek, 2020. "A Real-Time Dynamic Fuel Cell System Simulation for Model-Based Diagnostics and Control: Validation on Real Driving Data," Energies, MDPI, vol. 13(12), pages 1-20, June.
    5. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bowen & Wu, Kangcheng & Xi, Fuqiang & Xuan, Jin & Xie, Xu & Wang, Xiaoyang & Jiao, Kui, 2019. "Numerical analysis of operating conditions effects on PEMFC with anode recirculation," Energy, Elsevier, vol. 173(C), pages 844-856.
    2. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    3. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2021. "Model-Predictive-Control-Based Reference Governor for Fuel Cells in Automotive Application Compared with Performance from a Real Vehicle," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Xu, Liangfei & Hu, Zunyan & Fang, Chuan & Li, Jianqiu & Hong, Po & Jiang, Hongliang & Guo, Di & Ouyang, Minggao, 2021. "Anode state observation of polymer electrolyte membrane fuel cell based on unscented Kalman filter and relative humidity sensor before flooding," Renewable Energy, Elsevier, vol. 168(C), pages 1294-1307.
    5. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    6. Xiaogang Wu & Boyang Yu & Jiuyu Du & Wenwen Shi, 2019. "Feedforward-Double Feedback Control System of Dual-Switch Boost DC/DC Converters for Fuel Cell Vehicles," Energies, MDPI, vol. 12(15), pages 1-18, July.
    7. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Self-humidifying effect of air self-circulation system for proton exchange membrane fuel cell engines," Renewable Energy, Elsevier, vol. 164(C), pages 1143-1155.
    8. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2020. "Safe and Efficient Polymer Electrolyte Membrane Fuel Cell Control Using Successive Linearization Based Model Predictive Control Validated on Real Vehicle Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
    9. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    10. Matthieu Matignon & Toufik Azib & Mehdi Mcharek & Ahmed Chaibet & Adriano Ceschia, 2023. "Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems," Energies, MDPI, vol. 16(6), pages 1-21, March.
    11. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    12. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).
    13. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    14. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    15. Zili Wang & Guodong Yi & Shaoju Zhang, 2021. "An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System," Energies, MDPI, vol. 14(19), pages 1-18, September.
    16. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    17. Jiangyan Yan & Chang Zhou & Zhihai Rong & Haijiang Wang & Hui Li & Xuejiao Hu, 2020. "Simulation of the Dynamic Characteristics of a PEMFC System in Fluctuating Operating Conditions," Energies, MDPI, vol. 13(14), pages 1-17, July.
    18. Yuan, Hao & Dai, Haifeng & Wei, Xuezhe & Ming, Pingwen, 2020. "A novel model-based internal state observer of a fuel cell system for electric vehicles using improved Kalman filter approach," Applied Energy, Elsevier, vol. 268(C).
    19. Yang, Yuchen & Wu, Zhen & Wang, Bofei & Yao, Jing & Yang, Fusheng & Zhang, Zaoxiao & Ren, Jianwei, 2024. "Efficient water recovery and power generation system based on air-cooled fuel cell with semi-closed cathode circulation mode," Applied Energy, Elsevier, vol. 364(C).
    20. Robert Nebeluk & Maciej Ławryńczuk, 2022. "Fast Model Predictive Control of PEM Fuel Cell System Using the L 1 Norm," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7693-:d:681089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.