A Real-Time Dynamic Fuel Cell System Simulation for Model-Based Diagnostics and Control: Validation on Real Driving Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
- Kang, Sanggyu & Min, Kyoungdoug, 2016. "Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle," Applied Energy, Elsevier, vol. 161(C), pages 181-196.
- Boulon, L. & Agbossou, K. & Hissel, D. & Sicard, P. & Bouscayrol, A. & Péra, M.-C., 2012. "A macroscopic PEM fuel cell model including water phenomena for vehicle simulation," Renewable Energy, Elsevier, vol. 46(C), pages 81-91.
- Pathapati, P.R. & Xue, X. & Tang, J., 2005. "A new dynamic model for predicting transient phenomena in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 30(1), pages 1-22.
- Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matthieu Matignon & Toufik Azib & Mehdi Mcharek & Ahmed Chaibet & Adriano Ceschia, 2023. "Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2021. "Model-Predictive-Control-Based Reference Governor for Fuel Cells in Automotive Application Compared with Performance from a Real Vehicle," Energies, MDPI, vol. 14(8), pages 1-17, April.
- Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2020. "Safe and Efficient Polymer Electrolyte Membrane Fuel Cell Control Using Successive Linearization Based Model Predictive Control Validated on Real Vehicle Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
- Zhang Peng Du & Andraž Kravos & Christoph Steindl & Tomaž Katrašnik & Stefan Jakubek & Christoph Hametner, 2021. "Physically Motivated Water Modeling in Control-Oriented Polymer Electrolyte Membrane Fuel Cell Stack Models," Energies, MDPI, vol. 14(22), pages 1-20, November.
- Zili Wang & Guodong Yi & Shaoju Zhang, 2021. "An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System," Energies, MDPI, vol. 14(19), pages 1-18, September.
- Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gregor Tavčar & Tomaž Katrašnik, 2013. "An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells," Energies, MDPI, vol. 6(10), pages 1-60, October.
- Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
- Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
- Hou, Yongping & Yang, Zhihua & Fang, Xue, 2011. "An experimental study on the dynamic process of PEM fuel cell stack voltage," Renewable Energy, Elsevier, vol. 36(1), pages 325-329.
- Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
- Scrivano, G. & Piacentino, A. & Cardona, F., 2009. "Experimental characterization of PEM fuel cells by micro-models for the prediction of on-site performance," Renewable Energy, Elsevier, vol. 34(3), pages 634-639.
- Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
- de Avila Ferreira, Tafarel & Wuillemin, Zacharie & Faulwasser, Timm & Salzmann, Christophe & Van herle, Jan & Bonvin, Dominique, 2019. "Enforcing optimal operation in solid-oxide fuel-cell systems," Energy, Elsevier, vol. 181(C), pages 281-293.
- Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
- Sharifi Asl, S.M. & Rowshanzamir, S. & Eikani, M.H., 2010. "Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell," Energy, Elsevier, vol. 35(4), pages 1633-1646.
- Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
- Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
- Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
- Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).
- Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Liao, Hongbo & Li, Yuan, 2024. "A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation," Renewable Energy, Elsevier, vol. 237(PC).
- Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
- Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
- Zhiming Zhang & Sai Wu & Huimin Miao & Tong Zhang, 2022. "Numerical Investigation of Flow Channel Design and Tapered Slope Effects on PEM Fuel Cell Performance," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
More about this item
Keywords
real-time model; fuel cell system simulation; model-based control and diagnostics; experimental data; fuel cell vehicle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3148-:d:372858. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.