IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7454-d674963.html
   My bibliography  Save this article

Advanced Controlled Road Lighting System Concurrent with Users

Author

Listed:
  • Sławomir Zalewski

    (Lighting Technology Division, Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland)

Abstract

The operation of a concurrent lighting system using LED luminaires is based on the detection of individual road users, the recognition of their lighting needs and adjusting the operating state of the individual lighting devices that make up the system to the expectations of each user. The luminaire’s lighting divided into three independently controlled parts allows reducing electrical energy consumption up to 33% in comparison to a conventional concurrent road lighting system.

Suggested Citation

  • Sławomir Zalewski, 2021. "Advanced Controlled Road Lighting System Concurrent with Users," Energies, MDPI, vol. 14(22), pages 1-9, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7454-:d:674963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katharine L. Ricke & Ken Caldeira, 2014. "Natural climate variability and future climate policy," Nature Climate Change, Nature, vol. 4(5), pages 333-338, May.
    2. Leszek Kotulski & Artur Basiura & Igor Wojnicki & Sebastian Siuchta, 2021. "Lighting System Modernization as a Source of Green Energy," Energies, MDPI, vol. 14(10), pages 1-14, May.
    3. Irena Fryc & Dariusz Czyżewski & Jiajie Fan & Catalin D. Gălăţanu, 2021. "The Drive towards Optimization of Road Lighting Energy Consumption Based on Mesopic Vision—A Suburban Street Case Study," Energies, MDPI, vol. 14(4), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Ernst & Leszek Kotulski & Adam Sędziwy & Igor Wojnicki, 2023. "Graph-Based Computational Methods for Efficient Management and Energy Conservation in Smart Cities," Energies, MDPI, vol. 16(7), pages 1-21, April.
    2. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    3. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    4. Rafael Esteban & Zaida Troya & Enrique Herrera-Viedma & Antonio Peña-García, 2021. "IFMIF-DONES as Paradigm of Institutional Funding in the Way towards Sustainable Energy," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    5. Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).
    6. Davidovic, M. & Kostic, M., 2022. "Comparison of energy efficiency and costs related to conventional and LED road lighting installations," Energy, Elsevier, vol. 254(PB).
    7. Horaţiu Albu & Dorin Beu & Calin Ciugudeanu, 2022. "Study on the Power Quality of LED Street Luminaires," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    8. Dariusz Czyżewski, 2023. "The Photometric Test Distance in Luminance Measurement of Light-Emitting Diodes in Road Lighting," Energies, MDPI, vol. 16(3), pages 1-20, January.
    9. Lackner, Teresa & Fierro, Luca Eduardo & Mellacher, Patrick, 2024. "Opinion Dynamics meet Agent-based Climate Economics: An Integrated Analysis of Carbon Taxation," OSF Preprints rdfze, Center for Open Science.
    10. Matthew R. Sisco & Valentina Bosetti & Elke U. Weber, 2017. "When do extreme weather events generate attention to climate change?," Climatic Change, Springer, vol. 143(1), pages 227-241, July.
    11. László Balázs & Ferenc Braun & József Lengyel, 2023. "Energy Saving Potential of Traffic-Regulated Street Lighting," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    12. Konrad Henryk Bachanek & Blanka Tundys & Tomasz Wiśniewski & Ewa Puzio & Anna Maroušková, 2021. "Intelligent Street Lighting in a Smart City Concepts—A Direction to Energy Saving in Cities: An Overview and Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7454-:d:674963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.